Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features

被引:0
作者
Clinton J. Wang
Charlie A. Hamm
Lynn J. Savic
Marc Ferrante
Isabel Schobert
Todd Schlachter
MingDe Lin
Jeffrey C. Weinreb
James S. Duncan
Julius Chapiro
Brian Letzen
机构
[1] Yale School of Medicine,Department of Radiology and Biomedical Imaging
[2] Charité - Universitätsmedizin Berlin,Institute of Radiology
[3] Corporate Member of Freie Universität Berlin,Department of Biomedical Engineering
[4] Humboldt-Universität,undefined
[5] and Berlin Institute of Health,undefined
[6] Yale School of Engineering and Applied Science,undefined
来源
European Radiology | 2019年 / 29卷
关键词
Liver cancer; Artificial intelligence; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3348 / 3357
页数:9
相关论文
共 59 条
  • [1] Chartrand G(2017)Deep learning: a primer for radiologists Radiographics 37 2113-2131
  • [2] Cheng PM(2016)Lung pattern classification for interstitial lung diseases using a deep convolutional neural network IEEE Trans Med Imaging 35 1207-1216
  • [3] Vorontsov E(2016)Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique IEEE Trans Med Imaging 35 1153-1159
  • [4] Anthimopoulos M(2002)Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks Ecol Model 154 135-150
  • [5] Christodoulidis S(1996)Beyond the black box: open implementation IEEE Softw 13 10-11
  • [6] Ebner L(2001)Artificial neural networks: opening the black box Cancer 91 1615-1635
  • [7] Christe A(2018)Nonstandardized terminology to describe focal liver lesions in patients at risk for hepatocellular carcinoma: implications regarding clinical communication AJR Am J Roentgenol 210 85-90
  • [8] Mougiakakou S(2015)LI-RADS (Liver Imaging Reporting and Data System): summary, discussion, and consensus of the LI-RADS Management Working Group and future directions Hepatology 61 1056-1065
  • [9] Greenspan H(2018)Management implications and outcomes of LI-RADS-2, -3, -4, and -M category observations Abdom Radiol (NY) 43 143-148
  • [10] Van Ginneken B(2016)Reliability, validity, and reader acceptance of LI-RADS-an in-depth analysis Acad Radiol 23 1145-969