Islands at infinity on manifolds of asymptotically nonnegative curvature

被引:0
作者
Sérgio Mendonça
Detang Zhou
机构
[1] Universidade Federal Fluminense (UFF),Departamento de Análise
[2] Universidade Federal Fluminense (UFF),Departamento de Geometria
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2008年 / 39卷
关键词
nonnegative curvature; convexity; isometry group; 53C20; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an invariant which measures the R-eccentricity of a point in a complete Riemannian manifold M and show that it goes to zero when the point goes to infinity, if M has asymptotically nonnegative curvature. As a consequence we show that the isometry group is compact if M has asymptotically nonnegative curvature and a point with positive sectional curvature.
引用
收藏
页码:597 / 616
页数:19
相关论文
共 14 条
[1]  
Abresch U.(1985)Lower curvature bounds, Toponogov’s Theorem, and bounded topology Ann. Sci. École. Norm. Sup. (4) 18 651-670
[2]  
Abresch U.(1987)Lower curvature bounds, Toponogov’s Theorem, and bounded topology II Ann. Sci. École. Norm. Sup. (4) 20 475-502
[3]  
Ambrose W.(1957)A Theorem of Myers Duke Math. J. 24 345-348
[4]  
Cheeger J.(1991)Critical points of distance functions and applications to geometry Lecture Notes in Math. 1504 1-38
[5]  
Cheeger J.(1972)On the structure of complete manifolds of non-negative curvature Ann. Math. 96 413-443
[6]  
Gromoll D.(1935)Kürzeste Wege und Totalkrümung auf Flächen Compositio Math. 2 63-133
[7]  
Cohn-Vossen S.(1957)On the subharmonic functions and differential geometry in the large Comment. Math. Helv. 32 13-72
[8]  
Huber A.(1988)A compactification of a manifold with asymptotically nonnegative curvature Ann. Sci. École Norm. Sup. (4) 21 593-622
[9]  
Kasue A.(2003)Curvature conditions for immersions of submanifolds and applications Compositio Math. 137 211-226
[10]  
Mendonça S.(2004)Maximal ergodic theorems and applications to Riemannian geometry Israel J. Math. 139 319-335