On the Hodge–Newton filtration for p-divisible \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}$$\end{document} -modules

被引:0
作者
Elena Mantovan
Eva Viehmann
机构
[1] Caltech,Department of Mathematics
[2] Universität Bonn,Mathematisches Institut
关键词
Modulus Space; Galois Group; Additional Structure; Valuation Ring; Geometric Point;
D O I
10.1007/s00209-009-0561-4
中图分类号
学科分类号
摘要
The notions Hodge–Newton decomposition and Hodge–Newton filtration for F-crystals are due to Katz and generalize Messing’s result on the existence of the local-étale filtration for p-divisible groups. Recently, some of Katz’s classical results have been generalized by Kottwitz to the context of F-crystals with additional structures and by Moonen to μ-ordinary p-divisible groups. In this paper, we discuss further generalizations to the situation of crystals in characteristic p and of p-divisible groups with additional structure by endomorphisms.
引用
收藏
页码:193 / 205
页数:12
相关论文
共 11 条
[1]  
de Jong A.J.(1995)Crystalline Dieudonné module theory via formal and rigid geometry Pub. Math. IHES 82 5-96
[2]  
Faltings G.(1999)Integral crystalline cohomology over very ramified valuation rings J. Am. Math. Soc. 12 117-144
[3]  
Kottwitz R.(1985)Isocrystals with additional structure Compos. Math. 56 201-220
[4]  
Kottwitz R.(1997)Isocrystals with additional structure. II Compos. Math. 109 255-339
[5]  
Kottwitz R.(2003)On the Hodge–Newton decomposition for split groups Int. Math. Res. Not. 26 1433-1447
[6]  
Mantovan E.(2008)On non-basic Rapoport–Zink spaces Ann. sci. Ecole Norm. Sup. 41 671-716
[7]  
Moonen B.(2004)Serre–Tate theory for moduli spaces of PEL type Ann. sci. Ecole Norm. Sup. 37 223-269
[8]  
Rapoport M.(1996)On the classification and specialization of Compos. Math. 103 153-181
[9]  
Richartz M.(2008)-isocrystals with additional structure Math. Ann. 340 315-333
[10]  
Viehmann E.(1999)Connected components of affine Deligne–Lusztig varieties Ann. sci. Ecole Norm. Sup. 32 575-618