Spectrality of Moran-Type Bernoulli Convolutions

被引:0
作者
Qi-Rong Deng
Ming-Tian Li
机构
[1] Fujian Normal University,School of Mathematics and Statistics, Center for Applied Mathematics of Fujian Province and Fujian Key Laboratory of Mathematical Analysis and Applications (FJKLMAA)
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Moran-type; Bernoulli convolution; One dimension; Spectrality; Primary 42C05; 42A65; Secondary 28A78; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Let pn,dn∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n,\ d_n\in {{\mathbb {Z}}}$$\end{document} be integers such that |pn|>|dn|>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|p_n|>|d_n|>0$$\end{document} and {dn}n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{d_n\}_{n\ge 1}$$\end{document} is bounded. It is proven that the Moran-type Bernoulli convolution μ:=δp1-1{0,d1}∗δp1-1p2-1{0,d2}∗⋯∗δp1-1⋯pn-1{0,dn}∗⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mu :=\delta _{p_1^{-1}\{0,d_1\}}*\delta _{p_1^{-1}p_2^{-1} \{0,d_2\}}*\dots *\delta _{p_1^{-1}\dots p_n^{-1}\{0,d_n\}}*\dots \end{aligned}$$\end{document}is a spectral measure if and only if the numbers of factor 2 in the sequence {p1p2⋯pn2dn}n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big \{\frac{p_1p_2\dots p_n}{2d_n}\big \}_{n\ge 1}$$\end{document} are different from each other.
引用
收藏
相关论文
共 72 条
  • [31] Deng QR(2019)Non-spectral problem for the planar self-affine measures J. Funct. Anal. 276 3767-238
  • [32] Dong XH(1998)Spectrality of generalized Sierpinski-type self-affine measures J. Anal. Math. 75 229-1285
  • [33] Li MT(2000)Spectrality of a class of Cantor–Moran measures J. Anal. Math. 81 209-undefined
  • [34] Deng QR(2022)Remarks on “Dense analytic subspaces in fractal Nonlinearity 35 1261-undefined
  • [35] Lau KS(undefined)-spaces” by P.E.T. Jorgenson and S. Pedersen undefined undefined undefined-undefined
  • [36] Deng QR(undefined)Mock Fourier series and transforms associated with certain cantor measures undefined undefined undefined-undefined
  • [37] Li MT(undefined)Spectral Moran measures on undefined undefined undefined-undefined
  • [38] Dutkay DE(undefined)undefined undefined undefined undefined-undefined
  • [39] Han DG(undefined)undefined undefined undefined undefined-undefined
  • [40] Jorgensen PET(undefined)undefined undefined undefined undefined-undefined