Spectrality of Moran-Type Bernoulli Convolutions

被引:0
作者
Qi-Rong Deng
Ming-Tian Li
机构
[1] Fujian Normal University,School of Mathematics and Statistics, Center for Applied Mathematics of Fujian Province and Fujian Key Laboratory of Mathematical Analysis and Applications (FJKLMAA)
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Moran-type; Bernoulli convolution; One dimension; Spectrality; Primary 42C05; 42A65; Secondary 28A78; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Let pn,dn∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n,\ d_n\in {{\mathbb {Z}}}$$\end{document} be integers such that |pn|>|dn|>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|p_n|>|d_n|>0$$\end{document} and {dn}n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{d_n\}_{n\ge 1}$$\end{document} is bounded. It is proven that the Moran-type Bernoulli convolution μ:=δp1-1{0,d1}∗δp1-1p2-1{0,d2}∗⋯∗δp1-1⋯pn-1{0,dn}∗⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mu :=\delta _{p_1^{-1}\{0,d_1\}}*\delta _{p_1^{-1}p_2^{-1} \{0,d_2\}}*\dots *\delta _{p_1^{-1}\dots p_n^{-1}\{0,d_n\}}*\dots \end{aligned}$$\end{document}is a spectral measure if and only if the numbers of factor 2 in the sequence {p1p2⋯pn2dn}n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big \{\frac{p_1p_2\dots p_n}{2d_n}\big \}_{n\ge 1}$$\end{document} are different from each other.
引用
收藏
相关论文
共 72 条
  • [1] An LX(2019)On spectral Cantor–Moran measures and a variant of Bourgain’s sum of sine problem Adv. Math. 349 84-124
  • [2] Fu XY(2014)A class of spectral Moran measures J. Funct. Anal. 266 343-354
  • [3] Lai CK(2015)Spectrality of a class of infinite convolutions Adv. Math. 283 362-376
  • [4] An LX(2015)Spectrality of infinite Bernoulli convolutions J. Funct. Anal. 269 1571-1590
  • [5] He XG(2020)Spectrality of a class of Moran measures Canad. Math. Bull. 63 366-381
  • [6] An LX(2012)When does a Bernoulli convolution admit a spectrum? Adv. Math. 231 1681-1693
  • [7] He XG(2016)Spectra of Cantor measures Math. Ann. 366 1621-1647
  • [8] Lau K-S(2021)Spectrality of self-affine Sierpinski-type measures on Appl. Comput. Harmon. Anal. 52 63-81
  • [9] An LX(2013)Spectral property of Cantor measures with consecutive digits Adv. Math. 242 187-208
  • [10] He XG(2014)On spectral Adv. Math. 259 511-531