Parallel construction of wavelet trees on multicore architectures

被引:0
|
作者
José Fuentes-Sepúlveda
Erick Elejalde
Leo Ferres
Diego Seco
机构
[1] Universidad de Concepción,Department of Computer Science
[2] Universidad del Desarrollo,Faculty of Engineering
来源
关键词
Succinct data structure; Wavelet tree construction; Multicore; Parallel algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The wavelet tree has become a very useful data structure to efficiently represent and query large volumes of data in many different domains, from bioinformatics to geographic information systems. One problem with wavelet trees is their construction time. In this paper, we introduce two algorithms that reduce the time complexity of a wavelet tree’s construction by taking advantage of nowadays ubiquitous multicore machines. Our first algorithm constructs all the levels of the wavelet in parallel with O(n) time and O(nlgσ+σlgn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\lg \sigma + \sigma \lg n)$$\end{document} bits of working space, where n is the size of the input sequence and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the size of the alphabet. Our second algorithm constructs the wavelet tree in a domain decomposition fashion, using our first algorithm in each segment, reaching O(lgn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\lg n)$$\end{document} time and O(nlgσ+pσlgn/lgσ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\lg \sigma + p\sigma \lg n/\lg \sigma )$$\end{document} bits of extra space, where p is the number of available cores. Both algorithms are practical and report good speedup for large real datasets.
引用
收藏
页码:1043 / 1066
页数:23
相关论文
共 50 条
  • [41] Energy consumption model over parallel programs implemented on multicore architectures
    Isidro-Ramirez, Ricardo
    Meneses Viveros, Amilcar
    Hernandez Rubio, Erika
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2015, 6 (06) : 252 - 259
  • [42] ENERGY EFFICIENCY EVALUATION OF PARALLEL EXECUTION OF DEVS MODELS IN MULTICORE ARCHITECTURES
    Trabes, Guillermo G.
    Costa, Veronica Gil
    Wainer, Gabriel A.
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 2173 - 2183
  • [43] High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures
    Su, Huayou
    Wen, Mei
    Ren, Ju
    Wu, Nan
    Chai, Jun
    Zhang, Chunyuan
    RADIOENGINEERING, 2012, 21 (01) : 46 - 55
  • [44] A Fast Parallel Matrix Inversion Algorithm based on Heterogeneous Multicore Architectures
    Yu, Denggao
    He, Shiwen
    Huang, Yongming
    Yu, Guangshi
    Yang, Luxi
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 903 - 907
  • [45] A Hybrid Parallel Barnes-Hut Algorithm for GPU and Multicore Architectures
    Hannak, Hannes
    Hochstetter, Hendrik
    Blochinger, Wolfgang
    EURO-PAR 2013 PARALLEL PROCESSING, 2013, 8097 : 559 - 570
  • [46] A genetic algorithm for scheduling of data-parallel tasks on multicore architectures
    Liu Y.
    Meng L.
    Tomiyama H.
    IPSJ Transactions on System LSI Design Methodology, 2019, 12 : 74
  • [47] A Parallel Tiled Solver for Dense Symmetric Indefinite Systems on Multicore Architectures
    Baboulin, Marc
    Becker, Dulceneia
    Dongarra, Jack
    2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2012, : 14 - 24
  • [48] HBMax: Optimizing Memory Efficiency for Parallel Influence Maximization on Multicore Architectures
    Chen, Xinyu
    Minutoli, Marco
    Tian, Jiannan
    Halappanavar, Mahantesh
    Kalyanaraman, Ananth
    Tao, Dingwen
    PROCEEDINGS OF THE 2022 31ST INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, PACT 2022, 2022, : 412 - 425
  • [49] Power Consumption of Parallel Programming Interfaces in Multicore Architectures: A Case Study
    Garcia, Adriano Marques
    Schepke, Claudio
    Girardi, Alessandro Goncalves
    da Silva, Sherlon Almeida
    2018 SYMPOSIUM ON HIGH PERFORMANCE COMPUTING SYSTEMS (WSCAD 2018), 2018, : 77 - 83
  • [50] JParEnt: Parallel entropy decoding for JPEG decompression on heterogeneous multicore architectures
    Sodsong, Wasuwee
    Jung, Minyoung
    Park, Jinwoo
    Burgstaller, Bernd
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (15):