Parallel construction of wavelet trees on multicore architectures

被引:0
|
作者
José Fuentes-Sepúlveda
Erick Elejalde
Leo Ferres
Diego Seco
机构
[1] Universidad de Concepción,Department of Computer Science
[2] Universidad del Desarrollo,Faculty of Engineering
来源
关键词
Succinct data structure; Wavelet tree construction; Multicore; Parallel algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The wavelet tree has become a very useful data structure to efficiently represent and query large volumes of data in many different domains, from bioinformatics to geographic information systems. One problem with wavelet trees is their construction time. In this paper, we introduce two algorithms that reduce the time complexity of a wavelet tree’s construction by taking advantage of nowadays ubiquitous multicore machines. Our first algorithm constructs all the levels of the wavelet in parallel with O(n) time and O(nlgσ+σlgn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\lg \sigma + \sigma \lg n)$$\end{document} bits of working space, where n is the size of the input sequence and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the size of the alphabet. Our second algorithm constructs the wavelet tree in a domain decomposition fashion, using our first algorithm in each segment, reaching O(lgn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\lg n)$$\end{document} time and O(nlgσ+pσlgn/lgσ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\lg \sigma + p\sigma \lg n/\lg \sigma )$$\end{document} bits of extra space, where p is the number of available cores. Both algorithms are practical and report good speedup for large real datasets.
引用
收藏
页码:1043 / 1066
页数:23
相关论文
共 50 条
  • [11] Improved Parallel Construction of Wavelet Trees and Rank/Select Structures
    Shun, Julian
    2017 DATA COMPRESSION CONFERENCE (DCC), 2017, : 92 - 101
  • [12] Parallel tiled QR factorization for multicore architectures
    Buttari, Alfredo
    Langou, Julien
    Kurzak, Jakub
    Dongarra, Jack
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2008, 20 (13): : 1573 - 1590
  • [13] An efficient parallel set container for multicore architectures
    de Vega, Alvaro
    Andrade, Diego
    Fraguela, Basilio B.
    APPLICATIONS, TOOLS AND TECHNIQUES ON THE ROAD TO EXASCALE COMPUTING, 2012, 22 : 369 - 376
  • [14] PARALLEL PROGRAMMING MODELS FOR HETEROGENEOUS MULTICORE ARCHITECTURES
    Ferrer, Roger
    Bellens, Pieter
    Beltran, Vicenc
    Gonzalez, Marc
    Martorell, Xavier
    Badia, Rosa M.
    Ayguade, Eduard
    Yeom, Jae-Seung
    Schneider, Scott
    Koukos, Konstantinos
    Alvanos, Michail
    Nikolopoulos, Dimitrios S.
    Bilas, Angelos
    IEEE MICRO, 2010, 30 (05) : 42 - 53
  • [15] Parallel tiled QR factorization for multicore architectures
    Buttari, Alfredo
    Langou, Julien
    Kurzak, Jakub
    Dongarra, Jack
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2008, 4967 : 639 - +
  • [16] Parallel query processing in databases on multicore architectures
    Acker, Ralph
    Roth, Christian
    Bayer, Rudolf
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PROCEEDINGS, 2008, 5022 : 2 - +
  • [17] TACO: A scheduling scheme for parallel applications on multicore architectures
    Schoenherr, Jan H.
    Juurlink, Ben
    Richling, Jan
    SCIENTIFIC PROGRAMMING, 2014, 22 (03) : 223 - 237
  • [18] New Parallel Sparse Direct Solvers for Multicore Architectures
    Hogg, Jonathan
    Scott, Jennifer
    ALGORITHMS, 2013, 6 (04) : 702 - 725
  • [19] Fully Flexible Parallel Merge Sort for Multicore Architectures
    Marszalek, Zbigniew
    Wozniak, Marcin
    Polap, Dawid
    COMPLEXITY, 2018,
  • [20] THE PARALLEL TILED WZ FACTORIZATION ALGORITHM FOR MULTICORE ARCHITECTURES
    Bylina, Beata
    Bylina, Jaroslaw
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2019, 29 (02) : 407 - 419