Global properties of integrable Hamiltonian systems

被引:0
作者
O. V. Lukina
F. Takens
H. W. Broer
机构
[1] University of Groningen,Institute for Mathematics and Computer Science
[2] University of Leicester,Department of Mathematics
来源
Regular and Chaotic Dynamics | 2008年 / 13卷
关键词
integrable Hamiltonian system; global action-angle coordinates; symplectic topology; monodromy; Lagrange class; classification of integrable systems; 37J15; 37J35; 57R17; 57R20; 57R22;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with Lagrangian bundles which are symplectic torus bundles that occur in integrable Hamiltonian systems. We review the theory of obstructions to triviality, in particular monodromy, as well as the ensuing classification problems which involve the Chern and Lagrange class. Our approach, which uses simple ideas from differential geometry and algebraic topology, reveals the fundamental role of the integer affine structure on the base space of these bundles. We provide a geometric proof of the classification of Lagrangian bundles with fixed integer affine structure by their Lagrange class.
引用
收藏
页码:602 / 644
页数:42
相关论文
共 34 条
[1]  
Duistermaat J. J.(1980)On Global Action-Angle Coordinates Comm. Pure Appl. Math. 33 687-706
[2]  
Zung N. T.(2003)Symplectic Topology of Integrable Hamiltonian Systems. II. Topological Classification Compos. Math. 138 125-156
[3]  
Bates L.(1992)On Action-Angle Variables Arch. Ration. Mech. Anal. 120 337-343
[4]  
Śniatycki J.(1855)Note sur l’intégration des équations differéntielles de la dynamique J. Math. Pures Appl. 20 137-138
[5]  
Liouville J.(1968)Winkel- und Wirkungsvariable für allgemeine mechanische Systeme Helvetica Phys. Acta 41 965-968
[6]  
Jost R.(2006)Note on Equivariant Normal Forms of Poisson Structures Math. Res. Lett. 13 1001-1012
[7]  
Miranda E.(1988)The Quantum Mechanical Spherical Pendulum Bull. Amer. Math. Soc. (N.S.) 19 475-479
[8]  
Zung N.(1998)Quantum States in a Champagne Bottle J. Phys. A 31 657-670
[9]  
Tien A.(1999)Monodromy in Perturbed Kepler Systems: Hydrogen Atom in Crossed Fields Europhys. Lett. 47 1-7
[10]  
Cushman R.(1991)Monodromy in the Champagne Bottle Z. Angew. Math. Phys. 42 837-847