Group ring valued Hilbert modular forms

被引:0
作者
Silliman, Jesse [1 ]
机构
[1] Duke Univ, Durham, NC 27708 USA
关键词
Algebraic number theory; Algebraic geometry; Hilbert modular forms; Shimura varieties; Algebraic stacks; EXTENSIONS;
D O I
10.1007/s40993-024-00526-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the action of diamond operators on Hilbert modular forms with coefficients in a general commutative ring. In particular, we generalize a result of Chai on the surjectivity of the constant term map for Hilbert modular forms with nebentype to the setting of group ring valued modular forms. As an application, we construct certain Hilbert modular forms required for Dasgupta-Kakde's proof of the Brumer-Stark conjecture at odd primes. Since the forms required for the Brumer-Stark conjecture live on the non-PEL Shimura variety associated to the reductive group G=ResF/Q(GL2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = \,\textrm{Res}\,_{F/\textbf{Q}}({\textbf{GL}}_2)$$\end{document}, as opposed to the PEL Shimura variety associated to the subgroup G*subset of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G<^>* \subset G$$\end{document} studied by Chai, we give a detailed explanation of theory of algebraic diamond operators for G, as well as how the theory of toroidal and minimal compactifications for G may be deduced from the analogous theory for G*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G<^>*$$\end{document}.
引用
收藏
页数:55
相关论文
共 26 条
  • [1] Andreatta F, 2005, MEM AM MATH SOC, V173, P1
  • [2] Arithmetic moduli of generalized elliptic curves
    Conrad, Brian
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2007, 6 (02) : 209 - 278
  • [3] Dasgupta S., Explicit formula for Brumer-Stark units and Hilbert's 12th problem
  • [4] Dasgupta S., preprint
  • [5] On the Gross-Stark Conjecture
    Dasgupta, Samit
    Kakde, Mahesh
    Ventullo, Kevin
    [J]. ANNALS OF MATHEMATICS, 2018, 188 (03) : 833 - 870
  • [6] Hilbert modular forms and the Gross-Stark conjecture
    Dasgupta, Samit
    Darmon, Henri
    Pollack, Robert
    [J]. ANNALS OF MATHEMATICS, 2011, 174 (01) : 439 - 484
  • [7] DELIGNE P, 1994, COMPOS MATH, V90, P59
  • [8] Dimitrov M., 2004, Geometric aspects of Dwork theory, VI, P555
  • [9] Faltings G., 1990, ERGEBNISSE MATH IHRE, P22
  • [10] Gabriel P., 1963, Construction de preschemas quotient. Schemas en Groupes (Sem. Geometrie Algebrique, Inst. Hautes Etudes Sci., 1963/64)