Automata finiteness criterion in terms of van der Put series of automata functions

被引:19
作者
Anashin V. [1 ]
机构
[1] Moscow State University, Leninskie Gory 1, Moscow
基金
俄罗斯基础研究基金会;
关键词
automata sequences; automaton; finiteness conditions; p-adic numbers; van der Put series;
D O I
10.1134/S2070046612020070
中图分类号
学科分类号
摘要
In the paper we develop the p-adic theory of discrete automata. Every automaton $mathfrak{A}$ (transducer) whose input/output alphabets consist of p symbols can be associated to a continuous (in fact, 1-Lipschitz) map from p-adic integers to p-adic integers, the automaton function $f_mathfrak{A} $. The p-adic theory (in particular, the p-adic ergodic theory) turned out to be very efficient in a study of properties of automata expressed via properties of automata functions. In the paper we prove a criterion for finiteness of the number of states of automaton in terms of van der Put series of the automaton function. The criterion displays connections between p-adic analysis and the theory of automata sequences. © 2012, Pleiades Publishing, Ltd.
引用
收藏
页码:151 / 160
页数:9
相关论文
共 18 条
[1]  
Allouche J.-P., Shallit J., Automatic Sequences. Theory, (2003)
[2]  
Anashin V., Khrennikov A., Applied Algebraic Dynamics, (2009)
[3]  
Anashin V.S., Khrennikov A.Y., Yurova E.I., Characterization of ergodicity of p-adic dynamical systems by using van der Put basis, DokladyMath, 83, 3, pp. 306-308, (2011)
[4]  
Brauer W., Automatentheorie, (1984)
[5]  
Grigorchuk R.I., Some topics in the dynamics of group actions on rooted trees, Proc. Steklov Inst. Math, 273, pp. 64-175, (2011)
[6]  
Grigorchuk R.I., Nekrashevich V.V., Sushchanskii V.I., Automata, dynamical systems, and groups, Proc. Steklov Inst. Math, 231, pp. 128-203, (2000)
[7]  
Hensel K., Über eine neue Begr ündung der Theorie der algebraischen Zahlen, Jahresbericht der Deutschen Mathematiker-Vereinigung, 6, 3, pp. 83-88, (1897)
[8]  
Lunts A.G., The p-adic apparatus in the theory of finite automata, Problemy Kibernetiki, 14, pp. 17-30, (1965)
[9]  
Mahler K., p-Adic Numbers and Their Functions, (1981)
[10]  
Pin, “Profinite methods in automata theory,” in Symposium on Theoretical Aspects of Computer Science — STACS 2009, pp, 31–50 (Freiburg, (2009)