Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress

被引:0
|
作者
Virginia P. Roxas
Roger K. Smith
Eric R. Allen
Randy D. Allen
机构
[1] Department of Plant and Soil Sciences,Department of Biological Sciences
[2] Texas Tech University,Department of Plant Biology
[3] University of Illinois,undefined
来源
Nature Biotechnology | 1997年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Transgenic tobacco seedlings that overexpress a cDNA encoding an enzyme with both glutathione S-transferase (GST) and glutathione peroxidase (GPX) activity had GST- and GPX-specific activities approximately twofold higher than wild-type seedlings. These GST/GPX overexpressing seedlings grew significantly faster than control seedlings when exposed to chilling or salt stress. During chilling stress, levels of oxidized glutathione (GSSG) were significantly higher in transgenic seedlings than in wild-types. Growth of wild-type seedlings was accelerated by treatment with GSSG, while treatment with reduced glutathione or other sulfhydryl-reducing agents inhibited growth. Therefore, overexpression of GST/GPX can stimulate seedling growth under chilling and salt stress, and this effect could be caused by oxidation of the glutathione pool.
引用
收藏
页码:988 / 991
页数:3
相关论文
共 50 条
  • [1] Overexpression of glutathione S-transferase glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress
    Roxas, VP
    Smith, RK
    Allen, ER
    Allen, RD
    NATURE BIOTECHNOLOGY, 1997, 15 (10) : 988 - 991
  • [2] Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase
    Roxas, VP
    Lodhi, SA
    Garrett, DK
    Mahan, JR
    Allen, RD
    PLANT AND CELL PHYSIOLOGY, 2000, 41 (11) : 1229 - 1234
  • [3] Overexpression of the Glutathione S-Transferase ATGSTF11 Gene Improves Growth and Abiotic Stress Tolerance of Tobacco Transgenic Plants
    B. R. Kuluev
    A. A. Ermoshin
    E. V. Mikhaylova
    Russian Journal of Plant Physiology, 2022, 69
  • [4] Overexpression of the Glutathione S-Transferase ATGSTF11 Gene Improves Growth and Abiotic Stress Tolerance of Tobacco Transgenic Plants
    Kuluev, B. R.
    Ermoshin, A. A.
    Mikhaylova, E. V.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2022, 69 (07)
  • [5] Overexpression of an alfalfa glutathione S-transferase gene improved the saline-alkali tolerance of transgenic tobacco
    Du, Binghao
    Zhao, Weidi
    An, Yimin
    Li, Yakun
    Zhang, Xue
    Song, Lili
    Guo, Changhong
    BIOLOGY OPEN, 2019, 8 (09):
  • [6] Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants
    D. Liu
    Y. Liu
    J. Rao
    G. Wang
    H. Li
    F. Ge
    C. Chen
    Molecular Biology, 2013, 47 : 515 - 523
  • [7] Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants
    Liu, D.
    Liu, Y.
    Rao, J.
    Wang, G.
    Li, H.
    Ge, F.
    Chen, C.
    MOLECULAR BIOLOGY, 2013, 47 (04) : 515 - 523
  • [8] Response of Glutathione and Glutathione S-transferase in Rice Seedlings Exposed to Cadmium Stress
    Zhang Chun-hua
    Ge Ying
    RICE SCIENCE, 2008, 15 (01) : 73 - 76
  • [9] Response of Glutathione and Glutathione S-transferase in Rice Seedlings Exposed to Cadmium Stress
    ZHANG Chun-hua 1
    2 College of Resources and Environmental Sciences
    Rice Science, 2008, (01) : 73 - 76
  • [10] Transgenic cotton (Gossypium hirsutum L.) seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress tolerance
    Light, GG
    Mahan, JR
    Roxas, VP
    Allen, RD
    PLANTA, 2005, 222 (02) : 346 - 354