On three third order mock theta functions and Hecke-type double sums

被引:0
作者
Eric Mortenson
机构
[1] The University of Queensland,Department of Mathematics
来源
The Ramanujan Journal | 2013年 / 30卷
关键词
Hecke-type double sums; Appell–Lerch sums; Mock theta functions; Indefinite theta series; 11B65; 11F11; 11F27;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain four Hecke-type double sums for three of Ramanujan’s third order mock theta functions. We discuss how these four are related to the new mock theta functions of Andrews’ work on q-orthogonal polynomials and Bringmann, Hikami, and Lovejoy’s work on unified Witten–Reshetikhin–Turaev invariants of certain Seifert manifolds. We then prove identities between these new mock theta functions by first expressing them in terms of the universal mock theta function.
引用
收藏
页码:279 / 308
页数:29
相关论文
共 14 条
  • [1] Andrews G.E.(1984)Hecke modular forms and the Kac–Peterson identities Trans. Am. Math. Soc. 283 451-458
  • [2] Andrews G.E.(1986)The fifth and seventh order mock theta functions Trans. Am. Math. Soc. 293 113-134
  • [3] Atkin A.O.L.(1954)Some properties of partitions Proc. Lond. Math. Soc. 4 84-106
  • [4] Swinnerton-Dyer P.(2011)On the modularity of the unified WRT invariants of certain Seifert manifolds Adv. Appl. Math. 46 86-93
  • [5] Bringmann K.(1988)A proof of the mock theta conjectures Invent. Math. 94 639-660
  • [6] Hikami K.(1988)On the seventh order mock theta functions Invent. Math. 94 661-677
  • [7] Lovejoy J.(1984)Infinite-dimensional Lie algebras, theta functions and modular forms Adv. Math. 53 125-264
  • [8] Hickerson D.R.(1892)Poznámky k theorii funkcí elliptických Rozpr. Čes. Akad. Císaře Františka Josefa Vědy Slovesn. Umění, v praze 24 465-480
  • [9] Hickerson D.R.(1892)Bemerkungen zur Theorie der elliptischen Funktionen Jahrb. Fortschr. Math. 24 442-445
  • [10] Kac V.(1936)The final problem: an account of the mock theta functions J. Lond. Math. Soc. 11 55-80