On the two-power nonlinear Schrödinger equation with non-local terms in Sobolev–Lorentz spaces

被引:0
作者
Vanessa Barros
Lucas C. F. Ferreira
Ademir Pastor
机构
[1] Universidade Federal da Bahia,Instituto de Matemática
[2] Rua Sérgio Buarque de Holanda,IMECC
来源
Nonlinear Differential Equations and Applications NoDEA | 2019年 / 26卷
关键词
Nonlinear Schrödinger equation; Double-power nonlinearity; Non-local operators; Well-posedness; Scattering; Infinite energy solutions; Asymptotic self-similarity; 35Q55; 35Q60; 35A01; 35A02; 35B40; 35B06; 35A23; 35B30; 78A45;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the two-power nonlinear Schrödinger-type equations with non-local terms. We consider the framework of Sobolev–Lorentz spaces which contain singular functions with infinite-energy. Our results include global existence, scattering and decay properties in this singular setting with fractional regularity index. Solutions can be physically realized because they have finite local L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-mass. Moreover, we analyze the asymptotic stability of solutions and, although the equation has no scaling, show the existence of a class of solutions asymptotically self-similar w.r.t. the scaling of the single-power NLS-equation. Our results extend and complement those of Weissler (Adv Differ Equ 6(4):419–440, 2001), particularly because we are working in the larger setting of Sobolev-weak-Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces and considering non-local terms. The two nonlinearities of power-type and the generality of the non-local terms allow us to cover in a unified way a large number of dispersive equations and systems.
引用
收藏
相关论文
共 80 条
  • [31] Finot C(2013) solutions and unconditional well-posedness Commun. Math. Phys. 318 767-142
  • [32] Richardson DJ(1963)The physics of dipolar bosonic quantum gases Duke Math. J 30 129-1079
  • [33] Millot G(1998)The dynamics of the 3D radial NLS with the combined terms J. Math Pures Appl. 77 1065-138
  • [34] Ferreira LCF(1991)Convolution operators and Int. J. Nonlinear Mech. 16 129-1987
  • [35] Villamizar-Roa EJ(2009) spaces Proc. Am. Math. Soc. 137 1977-1343
  • [36] Fermann ME(2007)Regular and self-similar solutions of nonlinear Schrödinger equations Commun. Partial Differ. Equ. 32 1281-964
  • [37] Kruglov VI(2012)On the propagation of a three-dimensional packet of weakly nonlinear internal gravity wave C. R. Math. Acad. Sci. Paris 350 959-440
  • [38] Thomsen BC(2001)On the existence of infinite energy solutions for nonlinear Schrödinger equations Adv. Differ. Equ. 6 419-undefined
  • [39] Dudley JM(undefined)The nonlinear Schrödinger equation with combined power-type nonlinearities undefined undefined undefined-undefined
  • [40] Harvey JD(undefined)On the Davey–Stewartson system with singular initial data undefined undefined undefined-undefined