On the two-power nonlinear Schrödinger equation with non-local terms in Sobolev–Lorentz spaces

被引:0
作者
Vanessa Barros
Lucas C. F. Ferreira
Ademir Pastor
机构
[1] Universidade Federal da Bahia,Instituto de Matemática
[2] Rua Sérgio Buarque de Holanda,IMECC
来源
Nonlinear Differential Equations and Applications NoDEA | 2019年 / 26卷
关键词
Nonlinear Schrödinger equation; Double-power nonlinearity; Non-local operators; Well-posedness; Scattering; Infinite energy solutions; Asymptotic self-similarity; 35Q55; 35Q60; 35A01; 35A02; 35B40; 35B06; 35A23; 35B30; 78A45;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the two-power nonlinear Schrödinger-type equations with non-local terms. We consider the framework of Sobolev–Lorentz spaces which contain singular functions with infinite-energy. Our results include global existence, scattering and decay properties in this singular setting with fractional regularity index. Solutions can be physically realized because they have finite local L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-mass. Moreover, we analyze the asymptotic stability of solutions and, although the equation has no scaling, show the existence of a class of solutions asymptotically self-similar w.r.t. the scaling of the single-power NLS-equation. Our results extend and complement those of Weissler (Adv Differ Equ 6(4):419–440, 2001), particularly because we are working in the larger setting of Sobolev-weak-Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces and considering non-local terms. The two nonlinearities of power-type and the generality of the non-local terms allow us to cover in a unified way a large number of dispersive equations and systems.
引用
收藏
相关论文
共 80 条
  • [1] Antonelli P(2011)Existence of solitary waves in dipolar quantum gases Phys. D 240 426-431
  • [2] Sparber C(2004)Global existence and nonexistence results for a generalized Davey–Stewartson system J. Phys. A Math. Gen. 37 11531-11546
  • [3] Babaoglu C(2004)Two-dimensional wave packets in an elastic solid with couple stresses Int. J. Nonlinear Mech. 39 941-949
  • [4] Eden A(2012)The Davey Stewartson system in weak Differ. Integral Equ. 25 883-898
  • [5] Erbay S(2000) spaces differential integral equations C. R. Acad. Sci. Paris Sér. I Math. 330 87-92
  • [6] Babaoglu C(2013)Dispersion estimates for fourth order Schrödinger equations Adv. Differ. Equ. 18 769-796
  • [7] Erbay S(1998)Infinite energy solutions for Schrodinger-type equations with a nonlocal term Math. Z. 228 83-120
  • [8] Barros V(2000)Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations SIAM J. Math. Anal. 31 625-650
  • [9] Ben-Artzi M(1998)Scattering theory and self-similar solutions for the nonlinear Schrödinger equation NoDEA Nonlinear Differ. Equ. Appl. 5 355-365
  • [10] Koch H(2016)More self-similar solutions of the nonlinear Schrödinger equations J. Differ. Equ. 261 1881-1934