Bimeasures in Banach spaces

被引:0
作者
Nicolae Dinculeanu
Muthu Muthiah
机构
[1] University of Florida,Department of Mathematics
关键词
Banach Space; Additive Measure; Martingale Measure; Finite Family; Finite Variation;
D O I
10.1007/BF02505903
中图分类号
学科分类号
摘要
In this paper we study integration with respect to a bimeasure with finite semivariation. The bimeasures as well as the functions to be integrated, take on their values in Banach spaces.
引用
收藏
页码:339 / 392
页数:53
相关论文
共 19 条
  • [1] Brooks J. K.(1995)Integration in Banach spaces. Application to Stochastic Integration Atti Sem. Mat. Fis. Univ. Modena 43 317-361
  • [2] Dinculeanu N.(1983)Bimeasures and Sampling theorems for weakly harmonizable processes Stoch. Anal. Appl. 1 21-55
  • [3] Chang D. K.(1998)Stochastic Integral of process measures in Banach spaces I. Process measures with integrable variation Rendiconti Accad. Naz. Sci., Memorie di Mat. e Appl. 22 85-128
  • [4] Rao M. M.(1998)Stochastic Integral of process measures in Banach spaces II. Process measures with integrable semivariation Rendiconti Accad. Naz. Sci., Memorie di Mat. e Appl. 22 129-164
  • [5] Dinculeanu N.(1987)On integration in Banach spaces VIII (Polymeasures) Czech. Math. J. 37 487-506
  • [6] Dinculeanu N.(1988)On extension of polymeasures Czech. Math. J. 38 88-94
  • [7] Dobrakov I.(1988)On integration in Banach spaces (Integration with respect to polymeasures) Czech. Math. J. IX 589-601
  • [8] Dobrakov I.(1985)Bimeasures on topological spaces Glasnik Mat. 20 35-49
  • [9] Dobrakov I.(1955)Bimeasures and their integral extensions Ann. Mat. Pura Appl. 39 345-356
  • [10] Katsaras A. K.(1949)Integral representation of bilinear functionals Proc. Nat. Acad. Sci. U.S.A. 35 136-143