Solutions of the Jeffery-Hamel Problem Regularly Extendable in the Reynolds Number

被引:0
|
作者
L. D. Akulenko
D. V. Georgievskii
S. A. Kumakshev
机构
来源
Fluid Dynamics | 2004年 / 39卷
关键词
Reynolds Number; Velocity Profile; Flow Regime; Viscous Flow; Large Angle;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of steady viscous flow in a convergent channel is analyzed analytically and numerically for small, moderately large and asymptotically large Reynolds numbers over the entire range of allowed convergence angles. Attention is focused on regularly extendable problem solutions, for which purpose a high-accuracy hybrid numerical-analytical method of accelerated convergence and extension in a parameter is developed. For sufficiently large angles, the existence of tri-modal regimes symmetrical about the bisectrix and containing in- and outflow regions is established. The evolution of the velocity profiles with unbounded increase in the Reynolds number is investigated. Flow regimes for the critical convergence angle, which cannot be regularly extended in the parameter, are also studied. Several novel hydromechanical effects are noted.
引用
收藏
页码:12 / 28
页数:16
相关论文
共 50 条
  • [1] Solutions of the Jeffery-Hamel Problem Regularly Extendable in the Reynolds Number
    Akulenko, L. D.
    Georgievskii, D. V.
    Kumakshev, S. A.
    FLUID DYNAMICS, 2004, 39 (01) : 12 - 28
  • [2] New solutions and hydrodynamical effects in the Jeffery-Hamel problem
    Akulenko, LD
    Georgievskii, DV
    Kumakshev, SA
    Nesterov, SV
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2005, 12 (03) : 269 - 287
  • [3] On the stability of the Jeffery-Hamel flow
    Uribe, FJ
    DiazHerrera, E
    Bravo, A
    PeraltaFabi, R
    PHYSICS OF FLUIDS, 1997, 9 (09) : 2798 - 2800
  • [4] ON PERTURBATIONS OF JEFFERY-HAMEL FLOW
    BANKS, WHH
    DRAZIN, PG
    ZATURSKA, MB
    JOURNAL OF FLUID MECHANICS, 1988, 186 : 559 - 581
  • [5] Numerical-Analytical Investigation of Multimodal Solutions of the Jeffery-Hamel Problem for a Convergent Channel
    L. D. Akulenko
    D. V. Georgievskii
    S. A. Kumakshev
    Fluid Dynamics, 2005, 40 : 875 - 884
  • [6] Numerical-Analytical Investigation of Multimodal Solutions of the Jeffery-Hamel Problem for a Convergent Channel
    Akulenko, L. D.
    Georgievskii, D. V.
    Kumakshev, S. A.
    FLUID DYNAMICS, 2005, 40 (06) : 875 - 884
  • [7] Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem
    Salih, Othman Mahdi
    AL-Jawary, Majeed A.
    BAGHDAD SCIENCE JOURNAL, 2023, 20 (03) : 853 - 866
  • [8] Homotopy perturbation method for nonlinear MHD Jeffery-Hamel problem
    Moghimi, S. M.
    Ganji, D. D.
    Bararnia, H.
    Hosseini, M.
    Jalaal, M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) : 2213 - 2216
  • [9] Restarted Shooting Method Applied to Jeffery-Hamel Flow Problem
    Alzaid, Nawal
    Alzahrani, Kholoud
    Bakodah, Huda
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [10] Numerical-analytical investigation of multimodal solutions of the Jeffery-Hamel problem for a convergent channel
    Akulenko, L.D.
    Georgievskii, D.V.
    Kumakshev, S.A.
    Izvestiya Akademii Nauk. Mekhanika Zhidkosti I Gaza, 2005, (06): : 49 - 60