Probabilistic graph-coloring in bipartite and split graphs

被引:0
作者
N. Bourgeois
F. Della Croce
B. Escoffier
C. Murat
V. Th. Paschos
机构
[1] CNRS UMR 7024 and Université Paris-Dauphine,LAMSADE
[2] Politecnico di Torino,DAI
来源
Journal of Combinatorial Optimization | 2009年 / 17卷
关键词
Probabilistic optimization; Approximation algorithms; Graph coloring;
D O I
暂无
中图分类号
学科分类号
摘要
We revisit in this paper the stochastic model for minimum graph-coloring introduced in (Murat and Paschos in Discrete Appl. Math. 154:564–586, 2006), and study the underlying combinatorial optimization problem (called probabilistic coloring) in bipartite and split graphs. We show that the obvious 2-coloring of any connected bipartite graph achieves standard-approximation ratio 2, that when vertex-probabilities are constant probabilistic coloring is polynomial and, finally, we propose a polynomial algorithm achieving standard-approximation ratio 8/7. We also handle the case of split graphs. We show that probabilistic coloring is NP-hard, even under identical vertex-probabilities, that it is approximable by a polynomial time standard-approximation schema but existence of a fully a polynomial time standard-approximation schema is impossible, even for identical vertex-probabilities, unless P=NP. We finally study differential-approximation of probabilistic coloring in both bipartite and split graphs.
引用
收藏
页码:274 / 311
页数:37
相关论文
共 40 条
  • [1] Averbakh I(1994)Probabilistic a priori routing-location problems Nav Res Logist 41 973-989
  • [2] Berman O(1995)Probabilistic combinatorial optimization problems: a new domain in operational research Eur J Oper Res 87 693-706
  • [3] Simchi-Levi D(1989)On probabilistic traveling salesman facility location problems Transp Sci 3 184-191
  • [4] Bellalouna M(1990)The probabilistic minimum spanning tree problem Networks 20 245-275
  • [5] Murat C(1990)A priori optimization Oper Res 38 1019-1033
  • [6] Paschos VTh(2005)Local search for the probabilistic traveling salesman problem: correction to the 2-p-opt and 1-shift algorithms Eur J Oper Res 161 206-219
  • [7] Bertsimas DJ(1994)Scheduling with incompatible jobs Discrete Appl Math 55 219-232
  • [8] Bertsimas DJ(1984)Node-weighted graphs having the König–Egervary property Math Program Stud 22 44-63
  • [9] Bertsimas DJ(1994)Approximation results for the minimum graph coloring problem Inform Process Lett 50 19-23
  • [10] Jaillet P(1998)Differential approximation algorithms for some combinatorial optimization problems Theor Comput Sci 209 107-122