Generalized Fibonacci numbers of the form wx2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$wx^{2}+1$$\end{document}

被引:0
作者
Refik Keskin
Ümmügülsüm Öğüt
机构
[1] Sakarya University,Mathematics Department
关键词
Generalized Fibonacci numbers; Generalized Lucas numbers; Congruences; Diophantine equation; 11B37; 11B39; 11B50; 11B99; 11D41;
D O I
10.1007/s10998-016-0133-4
中图分类号
学科分类号
摘要
Let P≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\ge 3$$\end{document} be an integer and let (Un)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(U_{n})$$\end{document} and (Vn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(V_{n})$$\end{document} denote generalized Fibonacci and Lucas sequences defined by U0=0,U1=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{0}=0,U_{1}=1$$\end{document}; V0=2,V1=P,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{0}=2,V_{1}=P,$$\end{document} and Un+1=PUn-Un-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_{n+1}=PU_{n}-U_{n-1}$$\end{document}, Vn+1=PVn-Vn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{n+1}=PV_{n}-V_{n-1}$$\end{document} for n≥1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1.$$\end{document} In this study, when P is odd, we solve the equation Un=wx2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ U_{n}=wx^{2}+1$$\end{document} for w=1,2,3,5,6,7,10.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w=1,2,3,5,6,7,10.$$\end{document} After then, we solve some Diophantine equations utilizing solutions of these equations.
引用
收藏
页码:165 / 178
页数:13
相关论文
共 38 条
[1]  
Kalman D(2003)The Fibonacci numbers-exposed Math. Mag. 76 167-181
[2]  
Mena R(1993)Generalized Fibonacci and Lucas sequences and rootfinding methods Math. Comput. 61 365-372
[3]  
Muskat JB(1996)Algorithmic manipulation of Fibonacci identities Appl Fibonacci Number 6 389-408
[4]  
Rabinowitz S(1996)The square terms in Lucas sequences J. Number Theory 58 104-123
[5]  
Ribenboim P(2014)The square terms in generalized Fibonacci sequence Mathematika 60 85-100
[6]  
McDaniel WL(2015)Generalized Fibonacci and Lucas numbers of the form Int. J. Number. Theory 11 931-944
[7]  
Şiar Z(2014)Generalized Fibonacci and Lucas numbers of the form Bull. Korean Math. Soc. 51 1041-1054
[8]  
Keskin R(2015) and Math. Proc. Camb. Philos. Soc. 158 305-329
[9]  
Keskin R(2008)Shifted powers in binary recurrence sequences Elem. Math. 63 65-75
[10]  
Karaatlı O(2008)Fibonacci numbers at most one away from a perfect power J. Théor. Nombres Bordx. 20 555-600