4d N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} from 6d N=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(1,0\right) $$\end{document} on a torus with fluxes

被引:0
作者
Ibrahima Bah
Amihay Hanany
Kazunobu Maruyoshi
Shlomo S. Razamat
Yuji Tachikawa
Gabi Zafrir
机构
[1] University of California,Department of Physics
[2] Johns Hopkins University,Department of Physics and Astronomy
[3] Imperial College London,Faculty of Science and Technology
[4] Blackett Laboratory,Department of Physics
[5] Seikei University,IPMU
[6] Technion,undefined
[7] University of Tokyo,undefined
关键词
Field Theories in Higher Dimensions; Supersymmetric Gauge Theory;
D O I
10.1007/JHEP06(2017)022
中图分类号
学科分类号
摘要
Compactifying N=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(1,0\right) $$\end{document} theories on a torus, with additional fluxes for global symmetries, we obtain N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} supersymmetric theories in four dimensions. It is shown that for many choices of flux these models are toric quiver gauge theories with singlet fields. In particular we compare the anomalies deduced from the description of the six-dimensional theory and the anomalies of the quiver gauge theories. We also give predictions for anomalies of four-dimensional theories corresponding to general compactifications of M5-branes probing ℂ2/ℤk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{C}}}^2/{\mathrm{\mathbb{Z}}}_k $$\end{document} singularities.
引用
收藏
相关论文
共 89 条
[1]  
Gaiotto D(2012)N = 2 dualities JHEP 08 034-undefined
[2]  
Chan CS(2001)Chiral compactifications of 6-D conformal theories Nucl. Phys. B 597 228-undefined
[3]  
Ganor OJ(2015)6d JHEP 12 131-undefined
[4]  
Krogh M(2015) theories on S JHEP 11 123-undefined
[5]  
Ohmori K(2015) /T JHEP 07 073-undefined
[6]  
Shimizu H(2017) and class S theories: part II JHEP 04 064-undefined
[7]  
Tachikawa Y(2014)Geometric engineering, mirror symmetry and JHEP 10 162-undefined
[8]  
Yonekura K(1998) theories of class JHEP 01 002-undefined
[9]  
Del Zotto M(2015)4d JHEP 07 014-undefined
[10]  
Vafa C(2003) from 6d (1, 0) Nucl. Phys. B 667 183-undefined