共 50 条
Modelling of viscoelastic materials using non-ordinary state-based peridynamics
被引:0
|作者:
Yakubu Kasimu Galadima
Selda Oterkus
Erkan Oterkus
Islam Amin
Abdel-Hameed El-Aassar
Hosam Shawky
机构:
[1] University of Strathclyde,PeriDynamics Research Centre, Department of Naval Architecture, Ocean and Marine Engineering
[2] Ahmadu Bello University,Department of Civil Engineering
[3] Port Said University,Department of Naval Architecture and Marine Engineering
[4] Desert Research Centre,Egypt Desalination Research Centre of Excellence (EDRC) and Hydrogeochemistry Department
来源:
Engineering with Computers
|
2024年
/
40卷
关键词:
Peridynamics;
Viscoelasticity;
Non-ordinary state based;
Nonlocal;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This paper proposes a framework for implementing viscoelastic constitutive model from the classical continuum mechanics (CCM) theory within non-ordinary state-based peridynamics (NOSBPD). The motivation stems from the inadequacy of CCM to model very complex material behaviours such as initiation and propagation of cracks and nonlocal behaviour due to size effects. The proposed formulation leverages on the constitutive correspondence between NOSBPD and CCM to incorporate a CCM viscoelastic constitutive model based on hereditary integral into NOSBPD. The combination of hereditary constitutive model and NOSBPD effectively makes this formulation a nonlocal time–space viscoelastic framework where temporal nonlocality is incorporated by a hereditary viscoelastic model which stipulates that the behaviour of a material at any point in time depends on both the present action and the complete history of previous actions on the material, and spatial nonlocality on the other hand is incorporated via the nonlocal mechanism provided by the NOSBPD. For model validation, three benchmark problems were solved using the proposed framework. Results obtained were compared to results from analytical solution and solutions from referenced literature. In addition, parametric study was conducted to determine the influence of nonlocality on numerical prediction. Conclusions drawn from the validation studies presented are that the proposed framework is able to predict viscoelastic responses that agree well with local macro models as well as nonlocal micromodels/nanomodels as reported in the literature.
引用
收藏
页码:527 / 540
页数:13
相关论文