The 04 – 10 September 2017 Sun–Earth Connection Events: Solar Flares, Coronal Mass Ejections/Magnetic Clouds, and Geomagnetic Storms

被引:0
作者
Chin-Chun Wu
Kan Liou
Ronald P. Lepping
Lynn Hutting
机构
[1] Naval Research Laboratory,Space Science Division
[2] Applied Physics Laboratory,Space Department, Johns Hopkins University
[3] NASA/GSFC,University of Maryland Baltimore County
来源
Solar Physics | 2019年 / 294卷
关键词
Coronal mass ejection; Geomagnetic storm; Interplanetary shock; Interplanetary magnetic field; Space weather prediction; ICME-shock interaction;
D O I
暂无
中图分类号
学科分类号
摘要
In early September 2017, a series of solar flares and coronal mass ejections (CMEs) erupted from the Sun. The Cor2a coronagraph, a unit of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), onboard the Solar Terrestrial Relations Observatory (STEREO)-A spacecraft recorded two Sun–Earth-directed CMEs on 4 September (referred to as CME04) and 6 September (referred to as CME06). A few days later, the Wind spacecraft (≈212.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,212.4$\end{document} solar radii: R⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{R}_{\odot}$\end{document}) recorded two interplanetary shocks, presumably driven by CME04 and CME06, at ≈22:41UT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,22\mbox{:}41~\mbox{UT}$\end{document} on 06 September 2017 (referred to as Shock06) and at ≈22:48UT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,22\mbox{:}48~\mbox{UT}$\end{document} on 07 September 2017 (referred to as Shock07), respectively. The travel time of the CME04/Shock06 [Δtshock-CME@18R⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta t_{\text{shock-CME@18R}\odot}$\end{document}] and CME06/Shock07 from 18R⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$18~\mathrm{R}_{\odot}$\end{document} to the Wind spacecraft was 41.52 hours and 32.47 hours, respectively. The propagating speed [VCME\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V_{\mathrm{CME}}$\end{document}] of the CME04 and CME06 at ≈18R⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,18~\mathrm{R}_{\odot}$\end{document} was determined with SECCHI/Cor2a as ≈886kms−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,886~\mbox{km}\,\mbox{s}^{-1}$\end{document} and ≈1368kms−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,1368~\mbox{km}\,\mbox{s}^{-1}$\end{document}, respectively. Assuming a constant velocity after 18R⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$18~\mathrm{R}_{\odot }$\end{document}, the estimated Δtshock-CME@18R⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta t_{\text{shock-CME@18R}\odot}$\end{document} is 42.45 and 27.5 hours for CME04 and CME06, respectively. This simple estimate of the CME propagation speed provides a satisfactory result for the CME04 event (error ≈2.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,2.3\%$\end{document}) but not for the CME06 event (error ≈15.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\approx}\,15.3\%$\end{document}). The second event, CME06, was delayed further due to an interaction with the preceding event (CME04). It is suggested that the CME speed estimated near the Sun with coronagraph images can be a good estimator for the interplanetary CME (ICME) transit time when there is no pre-event. A three-dimensional magnetohydrodynamic simulation is performed to address this issue by providing a panoramic view of the entire process not available from the observations. A southward interplanetary magnetic field [Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{\mathrm{s}}$\end{document}] increased sharply to −31.6 nT on 7 September at Wind, followed by a severe geomagnetic storm (Dst=−124nT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{Dst} = -124~\mbox{nT}$\end{document}). The sharp increase of the IMF [Bs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{\mathrm{s}}$\end{document}] was a result of the interaction between Shock07 and the driver of Shock06 (CME04). This study suggests that a severe geomagnetic storm can be caused by the interaction between a MC, with an impinging IP shock from behind, and the Earth’s magnetosphere. The intensity of a geomagnetic storm will likely be stronger for an event associated with ICME–ICME interaction than for a geomagnetic event caused by only a single ICME.
引用
收藏
相关论文
共 230 条
  • [21] Tokumaru M.(2006)Global simulation of extremely fast coronal mass ejection on 23 July 2012 Ann. Geophys. 24 1033-undefined
  • [22] Kojima M.(2014)Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections J. Atmos. Solar-Terr. Phys. 121 163-undefined
  • [23] Gopalswamy N.A.(2014)Predictions of the arrival time of coronal mass ejections at 1 AU: An analysis of the causes of errors Nat. Commun. 5 558-undefined
  • [24] Gopalswamy N.A.(2004)Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995 – 2009 and implications for storm forecasting Ann. Geophys. 22 8517-undefined
  • [25] Lara A.(2011)The association of coronal mass ejections with their effects near the Earth Space Weather 9 70-undefined
  • [26] Lepping R.P.(2005)Coronal mass ejections and interplanetary shocks Ann. Geophys. 23 1346-undefined
  • [27] Kaiser M.L.(1985)The solar diurnal variation in the amplitude of sudden commencements of magnetic storms at the geomagnetic equator J. Geophys. Res. 90 159-undefined
  • [28] Berdichevsky D.B.(1953)Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978 – 1979) J. Geophys. Res. 58 335-undefined
  • [29] St. Cyr O.C.(1988)The role of aerodynamic drag in propagation of interplanetary coronal mass ejections J. Geophys. Res. 93 141-undefined
  • [30] Gopalswamy N.(2010)Empirical reconstruction and numerical modeling of the first geoeffective coronal mass ejection of solar cycle 24 Astron. Astrophys. 512 265-undefined