Magnetization reversal through an antiferromagnetic state

被引:0
作者
Somnath Ghara
Evgenii Barts
Kirill Vasin
Dmytro Kamenskyi
Lilian Prodan
Vladimir Tsurkan
István Kézsmárki
Maxim Mostovoy
Joachim Deisenhofer
机构
[1] Institute for Physics,Experimentalphysik V, Center for Electronic Correlations and Magnetism
[2] University of Augsburg,Institute for Physics
[3] Zernike Institute for Advanced Materials,undefined
[4] University of Groningen,undefined
[5] Kazan (Volga region) Federal University,undefined
[6] Institute of Applied Physics,undefined
[7] Moldova State University,undefined
来源
Nature Communications | / 14卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Magnetization reversal in ferro- and ferrimagnets is a well-known archetype of non-equilibrium processes, where the volume fractions of the oppositely magnetized domains vary and perfectly compensate each other at the coercive magnetic field. Here, we report on a fundamentally new pathway for magnetization reversal that is mediated by an antiferromagnetic state. Consequently, an atomic-scale compensation of the magnetization is realized at the coercive field, instead of the mesoscopic or macroscopic domain cancellation in canonical reversal processes. We demonstrate this unusual magnetization reversal on the Zn-doped polar magnet Fe2Mo3O8. Hidden behind the conventional ferrimagnetic hysteresis loop, the surprising emergence of the antiferromagnetic phase at the coercive fields is disclosed by a sharp peak in the field-dependence of the electric polarization. In addition, at the magnetization reversal our THz spectroscopy studies reveal the reappearance of the magnon mode that is only present in the pristine antiferromagnetic state. According to our microscopic calculations, this unusual process is governed by the dominant intralayer coupling, strong easy-axis anisotropy and spin fluctuations, which result in a complex interplay between the ferrimagnetic and antiferromagnetic phases. Such antiferro-state-mediated reversal processes offer novel concepts for magnetization control, and may also emerge for other ferroic orders.
引用
收藏
相关论文
共 50 条
[41]   Antiferromagnetic layer thickness dependence of the magnetization reversal in the epitaxial MnPd/Fe exchange bias system [J].
Zhan, Qing-feng ;
Zhang, Wei ;
Krishnan, Kannan M. .
PHYSICAL REVIEW B, 2011, 83 (09)
[42]   GROUND-STATE STAGGERED MAGNETIZATION OF THE ANTIFERROMAGNETIC HEISENBERG-MODEL [J].
HAAN, O ;
KLAETKE, JU ;
MUTTER, KH .
PHYSICAL REVIEW B, 1992, 46 (09) :5723-5726
[43]   Antiferromagnetic fourfold anisotropy induced exchange bias and magnetization reversal behaviors in CoFeB/IrMn bilayers [J].
Zhang, Chenyu ;
Zhan, Qingfeng ;
Hu, Yong .
APPLIED PHYSICS LETTERS, 2023, 123 (01)
[44]   Study of Magnetization Reversal Process in FeCo/Ru/FeCo Exchange Coupled Synthetic Antiferromagnetic Multilayers [J].
Liu, Xi ;
Ishio, Shunji ;
Ma, Hailin .
JOURNAL OF NANOMATERIALS, 2015, 2015
[45]   STABILITY OF THE AMORPHOUS MAGNETIC STATE AGAINST ASYMMETRIC MAGNETIZATION REVERSAL [J].
DANIELSZABO, J ;
POTOCKY, L ;
KISDIKOSZO, E ;
NOVAK, L ;
HRABCAK, M ;
ZATROCH, M .
PHYSICA SCRIPTA, 1989, 39 (03) :351-355
[46]   Magnetization reversal through flipping solitons under the localized inhomogeneity [J].
Kavitha, L. ;
Sathishkumar, P. ;
Gopi, D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (12)
[47]   Visualizing rotation and reversal of the Néel vector through antiferromagnetic trichroism [J].
Kenta Kimura ;
Yutaro Otake ;
Tsuyoshi Kimura .
Nature Communications, 13
[48]   Size and shape dependences on magnetization reversal in ferromagnetic/antiferromagnetic bilayer patterned into nano-dot arrays [J].
Girgis, E. ;
D Portugal, R. ;
Temst, K. ;
Van Haesendonck, C. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (09) :1733-1738
[49]   Magnetization process in antiferromagnetic EuPdIn [J].
Ito, T. ;
Nishigori, S. ;
Hiromitsu, I. ;
Kurisu, M. .
Journal of Magnetism and Magnetic Materials, 1998, 177-181 (Pt 2) :1079-1080
[50]   MAGNETIZATION PROCESSES IN ANTIFERROMAGNETIC CHROMIUM [J].
KONDORSKII, EI ;
KOSTINA, TI ;
GALKIN, VY .
ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1975, 69 (05) :1752-1755