The trace graph of the matrix ring over a finite commutative ring

被引:0
作者
F. A. A. Almahdi
K. Louartiti
M. Tamekkante
机构
[1] King Khalid University,Department of Mathematics, Faculty of Sciences
[2] University Hassan II,Department of Mathematics, Faculty of Science, Ben M’Sik
[3] University Moulay Ismail,Laboratory MACS, Faculty of Sciences Zitoune
来源
Acta Mathematica Hungarica | 2018年 / 156卷
关键词
16S50; 13A99; 05C99; zero-divisor; matrix ring; zero-divisor graph; trace graph;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring and let n>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n >1}$$\end{document} be an integer. We introduce a simple graph, denoted by Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document}, which we call the trace graph of the matrix ring Mn(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)}$$\end{document}, such that its vertex set is Mn(R)*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_n(R)^{\ast}}$$\end{document} and such that two distinct vertices A and B are joined by an edge if and only if Tr(AB)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm Tr} (AB)=0}$$\end{document} where Tr(AB)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ {\rm Tr} (AB)}$$\end{document} denotes the trace of the matrix AB. We prove that Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document} is connected with diam(Γt(Mn(R)))=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm diam}(\Gamma_{t}(M_{n}(R)))=2}$$\end{document} and gr(Γt(Mn(R)))=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm gr} (\Gamma_t(M_n(R)))=3}$$\end{document}. We investigate also the interplay between the ring-theoretic properties of R and the graph-theoretic properties of Γt(Mn(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_t(M_n(R))}$$\end{document}. Hence, we use the notion of the irregularity index of a graph to characterize rings with exactly one nontrivial ideal.
引用
收藏
页码:132 / 144
页数:12
相关论文
共 30 条
[1]  
Akgünes N(2012)Analyzing special parameters over zero-divisor graphs AIP Conference Proceedings 1479 390-393
[2]  
Amini A(2012)Haghighi, On a graph of ideals Acta Math. Hungar. 134 369-384
[3]  
Amini B(2008)On the diameter and girth of a zero divisor graph. II Houston J. Math. 34 361-371
[4]  
Momtahan E(2008)On the zero-divisor graph of a ring Comm. Algebra 36 3073-3092
[5]  
Shirdareh MH(1999)The zero-divisor graph of a commutative ring J. Algebra 217 434-447
[6]  
Anderson DF(2010)Unit graphs associated with rings Comm. Algebra 38 2851-2871
[7]  
Anderson DF(1988)Coloring of commutative rings J. Algebra 116 208-226
[8]  
Badawi A(2009)Zero-divisor graphs of matrices over commutative rings Comm. Algebra 37 1186-1192
[9]  
Anderson DF(2013)Zero divisor graphs of upper triangular matrix rings Comm. Algebra 41 4622-4636
[10]  
Livingston PS(2013)Balanced zero-divisor graphs of matrix rings Lobachevskii J. Math. 34 137-141