Electrical flows over spanning trees

被引:0
|
作者
Swati Gupta
Ali Khodabakhsh
Hassan Mortagy
Evdokia Nikolova
机构
[1] Georgia Institute of Technology,School of Industrial and Systems Engineering
[2] University of Texas at Austin,Department of Electrical and Computer Engineering
来源
Mathematical Programming | 2022年 / 196卷
关键词
Electrical flows; Distribution network reconfiguration; Approximation algorithms; Iterative rounding; Spectral sparsification; 90C11; 90C25; 90C27; 90C30; 90C59; 90C90; 90B10;
D O I
暂无
中图分类号
学科分类号
摘要
The network reconfiguration problem seeks to find a rooted tree T such that the energy of the (unique) feasible electrical flow over T is minimized. The tree requirement on the support of the flow is motivated by operational constraints in electricity distribution networks. The bulk of existing results on convex optimization over vertices of polytopes and on the structure of electrical flows do not easily give guarantees for this problem, while many heuristic methods have been developed in the power systems community as early as 1989. Our main contribution is to give the first provable approximation guarantees for the network reconfiguration problem. We provide novel lower bounds and corresponding approximation factors for various settings ranging from min{O(m-n),O(n)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{{\mathcal {O}}(m-n), {\mathcal {O}}(n)\}$$\end{document} for general graphs, to O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\sqrt{n})$$\end{document} over grids with uniform resistances on edges, and O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1)$$\end{document} for grids with uniform edge resistances and demands. To obtain the result for general graphs, we propose a new method for (approximate) spectral graph sparsification, which may be of independent interest. Using insights from our theoretical results, we propose a general heuristic for the network reconfiguration problem that is orders of magnitude faster than existing methods in the literature, while obtaining comparable performance.
引用
收藏
页码:479 / 519
页数:40
相关论文
共 46 条
  • [1] Electrical flows over spanning trees
    Gupta, Swati
    Khodabakhsh, Ali
    Mortagy, Hassan
    Nikolova, Evdokia
    MATHEMATICAL PROGRAMMING, 2022, 196 (1-2) : 479 - 519
  • [2] Spanning Trees: A Survey
    Ozeki, Kenta
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2011, 27 (01) : 1 - 26
  • [3] Balanced partition of minimum spanning trees
    Andersson, M
    Gudmundsson, J
    Levcopoulos, C
    Narasimhan, G
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2003, 13 (04) : 303 - 316
  • [4] Improving spanning trees by upgrading nodes
    Krumke, SO
    Noltemeier, H
    Wirth, HC
    Marathe, MV
    Ravi, R
    Ravi, SS
    Sundaram, R
    THEORETICAL COMPUTER SCIENCE, 1999, 221 (1-2) : 139 - 155
  • [5] Faster generation of random spanning trees
    Kelner, Jonathan A.
    Madry, Aleksander
    2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 13 - 21
  • [6] Chain-constrained spanning trees
    Olver, Neil
    Zenklusen, Rico
    MATHEMATICAL PROGRAMMING, 2018, 167 (02) : 293 - 314
  • [7] On finding spanning trees with few leaves
    Salamon, Gabor
    Wiener, Gabor
    INFORMATION PROCESSING LETTERS, 2008, 105 (05) : 164 - 169
  • [8] Spanning trees with minimum weighted degrees
    Ghodsi, Mohammad
    Mahini, Hamid
    Mirjalali, Kian
    Gharan, Shayan Oveis
    R., Amin S. Sayedi
    Zadimoghaddam, Morteza
    INFORMATION PROCESSING LETTERS, 2007, 104 (03) : 113 - 116
  • [9] Minimum restricted diameter spanning trees
    Hassin, R
    Levin, A
    DISCRETE APPLIED MATHEMATICS, 2004, 137 (03) : 343 - 357
  • [10] Chain-constrained spanning trees
    Neil Olver
    Rico Zenklusen
    Mathematical Programming, 2018, 167 : 293 - 314