The Shannon entropy as a measure of diffusion in multidimensional dynamical systems

被引:0
作者
C. M. Giordano
P. M. Cincotta
机构
[1] Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata (CONICET-UNLP),Grupo de Caos en Sistemas Hamiltonianos, Facultad de Ciencias Astonómicas y Geofísicas
来源
Celestial Mechanics and Dynamical Astronomy | 2018年 / 130卷
关键词
Chaotic diffusion; Multidimensional dynamical systems; Entropy; Rate of diffusion;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work, we introduce two new estimators of chaotic diffusion based on the Shannon entropy. Using theoretical, heuristic and numerical arguments, we show that the entropy, S, provides a measure of the diffusion extent of a given small initial ensemble of orbits, while an indicator related with the time derivative of the entropy, S′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S'$$\end{document}, estimates the diffusion rate. We show that in the limiting case of near ergodicity, after an appropriate normalization, S′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S'$$\end{document} coincides with the standard homogeneous diffusion coefficient. The very first application of this formulation to a 4D symplectic map and to the Arnold Hamiltonian reveals very successful and encouraging results.
引用
收藏
相关论文
共 99 条
[1]  
Arnold VI(1964)On the nonstability of dynamical systems with many degrees of freedom Sov. Math. Dokl. 5 581-585
[2]  
Batygin K(2015)Dynamical evolution of multi-resonant systems: the case of GJ876 Astron. J. 149 167-39
[3]  
Deck KM(2010)Chirikov diffusion in the asteroidal three-body resonance Celest. Mech. Dyn. Astron. 108 35-undefined
[4]  
Holman MJ(1943)Stochastic problems in physics and astronomy Rev. Mod. Phys. 15 1-undefined
[5]  
Cachucho F(1979)A universal instability of many-dimensional oscillator systems Phys. Rep. 52 263-undefined
[6]  
Cincotta PM(1999)Astronomical time-series analysis-III. The role of the observational errors in the minimum entropy method Mon. Not. R. Astron. Soc. 307 941-undefined
[7]  
Ferraz-Mello S(2002)Arnold diffusion: an overview through dynamical astronomy New Astron. Rev. 46 13-undefined
[8]  
Chandrasekhar S(2012)Chaotic diffusion in multidimensional conservative maps Int. J. Bifurc. Chaos 22 10-undefined
[9]  
Chirikov BV(2016)Theory and applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) method Lect. Notes Phys. 915 93-undefined
[10]  
Cincotta PM(1999)Conditional entropy Celest. Mech. Dyn. Astron. 73 195-undefined