Boundary blow-up solutions of p-Laplacian elliptic equations with lower order terms

被引:0
作者
Huiling Li
Peter Y. H. Pang
Mingxin Wang
机构
[1] Southeast University,Department of Mathematics
[2] National University of Singapore,Department of Mathematics
[3] Harbin Institute of Technology,Natural Science Research Center
来源
Zeitschrift für angewandte Mathematik und Physik | 2012年 / 63卷
关键词
35J25; 35J65; 35K57; Blow-up solution; Comparison principle;
D O I
暂无
中图分类号
学科分类号
摘要
We study the existence, uniqueness, and asymptotic behavior of blow-up solutions for a general quasilinear elliptic equation of the type −Δpu = a(x)um−b(x)f(u) with p >  1 and 0 <  m <  p−1. The main technical tool is a new comparison principle that enables us to extend arguments for semilinear equations to quasilinear ones. Indeed, this paper is an attempt to generalize all available results for the semilinear case with p =  2 to the quasilinear case with p >  1.
引用
收藏
页码:295 / 311
页数:16
相关论文
共 75 条
[1]  
Bandle R.(1981)The Thomas-Fermi-Von Weizsacke theory of atoms and molecules Commun. Math. Phys. 79 167-180
[2]  
Brézis H.(1992)‘Large’ solutions of semilinear elliptic equations: existence, uniqueness, and asymptotic behaviour J. Anal. Math. 58 9-24
[3]  
Lieb E.(1916)Δ Math. Ann. 77 173-212
[4]  
Bandle C.(1997) = e Trans. Am. Math. Soc. 349 4231-4249
[5]  
Marcus M.(2008) und die automorphen Funktionen J. Differ. Equ. 244 3180-3203
[6]  
Bieberbach L.(2005)Existence of positive solutions for some problems with nonlinear diffusion Proc. Lond. Math. Soc. 91 459-482
[7]  
Cañada A.(2002)Existence, uniqueness and blow-up rate of large solutions for a canonical class of one-dimensional problems on the half-line Commun. Contemp. Math. 4 559-586
[8]  
Drábek P.(2002)General uniqueness results and variation speed for blow-up solutions of elliptic equations C. R. Acad. Sci. Paris Ser. I. 335 447-452
[9]  
Gámez J.L.(2006)Existence and uniqueness of blow-up solutions for a class of logistic equations Asymptot. Anal. 46 275-298
[10]  
Cano-Casanova S.(2007)Uniqueness of the blow-up boundary solution of logistic equation with absorption Trans. Am. Math. Soc. 359 3275-3286