Scattering and embedded trapped modes for an infinite nonhomogeneous Timoshenko beam

被引:0
|
作者
Hugo Aya
Ricardo Cano
Peter Zhevandrov
机构
[1] Universidad Distrital Francisco José de Caldas,Facultad de Ingeniería
[2] Universidad de La Sabana,Facultad de Ingeniería
来源
Journal of Engineering Mathematics | 2012年 / 77卷
关键词
Perturbations; Resonances; Timoshenko beam; Trapped modes;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an infinite Timoshenko beam whose density is weakly perturbed on a finite interval. The plane waves of the unperturbed system form the continuous spectrum, which has multiplicity 2 for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \omega^2 < \omega^2_0}$$\end{document} and multiplicity 4 for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega^2 > \omega^2_0}$$\end{document} (here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega}$$\end{document} is the frequency and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega_0}$$\end{document} is the cut-off frequency). The first branch of the spectrum (the flexural mode) corresponds to the range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega^2 >0 }$$\end{document}, and the second (the shear mode) to the range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega^2>\omega_0^2}$$\end{document}. The perturbation gives rise to a resonance (a pole of the analytic continuation of the reflection coefficient of the corresponding scattering problem) in a neighborhood of the point β = 0, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^2=\omega_0^2-\omega^2}$$\end{document}, in the complex plane of the parameter β. When the pole is real and positive, it becomes an eigenvalue of the problem. It turns out that this is the case for certain perturbations (e.g., a square barrier of certain length); the pole then defines an eigenvalue (a trapped mode) embedded in the continuous spectrum of the first branch. When the conditions for the existence of an eigenvalue are not satisfied, the reflection coefficient changes abruptly in a neighborhood of the real part of the pole, rapidly growing from almost zero to almost one and then back to zero, as β passes through the resonant value, according to a formula of Breit–Wigner type familiar from quantum mechanics.
引用
收藏
页码:87 / 104
页数:17
相关论文
共 50 条
  • [41] EXCITATION OF INTERNAL KINK MODES BY TRAPPED ENERGETIC BEAM IONS
    CHEN, L
    WHITE, RB
    ROSENBLUTH, MN
    PHYSICAL REVIEW LETTERS, 1984, 52 (13) : 1122 - 1125
  • [42] Scattering of a tightly focused beam by an optically trapped particle
    Lock, James A.
    Wrbanek, Susan Y.
    Weiland, Kenneth E.
    APPLIED OPTICS, 2006, 45 (15) : 3634 - 3645
  • [43] The branch structure of embedded trapped modes in two-dimensional waveguides
    McIver, M
    Linton, CM
    Zhang, J
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2002, 55 : 313 - 326
  • [44] Trapped modes of the Helmholtz equation in infinite waveguides with wall indentations and circular obstacles
    Sargent, Cristina V.
    Mestel, A. J.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2019, 84 (02) : 312 - 344
  • [45] Solving for hydroelastic ship response using Timoshenko beam modes at forward speed
    Zhou, Baoshun
    Amini-Afshar, Mostafa
    Bingham, Harry B.
    Shao, Yanlin
    Henshaw, William D.
    OCEAN ENGINEERING, 2024, 300
  • [46] Natural frequencies and normal modes of a spinning timoshenko beam with general boundary conditions
    Bert, Charles W.
    Journal of Applied Mechanics, Transactions ASME, 1992, 59 (04): : 1046 - 1046
  • [47] Exact and numerically stable expressions for Euler-Bernoulli and Timoshenko beam modes
    Khasawneh, Firas A.
    Segalman, Daniel
    APPLIED ACOUSTICS, 2019, 151 : 215 - 228
  • [48] Dynamic stiffness of infinite Timoshenko beam on viscoelastic foundation in moving co-ordinate
    Chen, YH
    Huang, YH
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 48 (01) : 1 - 18
  • [49] SOME FEATURES OF A PLASMA BEAM PRODUCED BY A HF SLOTTED LINE AND TRAPPED IN A NONHOMOGENEOUS MAGNETIC FIELD
    FONTANESI, M
    SINDONI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1969, 64 (01): : 88 - +
  • [50] Scattering by a Conducting Infinite Cylinder Illuminated with a Gaussian Beam
    Shi, Zhi-wei
    Zhang, Bo
    Sun, Xian-ming
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 1938 - +