Scattering and embedded trapped modes for an infinite nonhomogeneous Timoshenko beam

被引:0
|
作者
Hugo Aya
Ricardo Cano
Peter Zhevandrov
机构
[1] Universidad Distrital Francisco José de Caldas,Facultad de Ingeniería
[2] Universidad de La Sabana,Facultad de Ingeniería
来源
Journal of Engineering Mathematics | 2012年 / 77卷
关键词
Perturbations; Resonances; Timoshenko beam; Trapped modes;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an infinite Timoshenko beam whose density is weakly perturbed on a finite interval. The plane waves of the unperturbed system form the continuous spectrum, which has multiplicity 2 for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \omega^2 < \omega^2_0}$$\end{document} and multiplicity 4 for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega^2 > \omega^2_0}$$\end{document} (here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega}$$\end{document} is the frequency and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega_0}$$\end{document} is the cut-off frequency). The first branch of the spectrum (the flexural mode) corresponds to the range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega^2 >0 }$$\end{document}, and the second (the shear mode) to the range \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega^2>\omega_0^2}$$\end{document}. The perturbation gives rise to a resonance (a pole of the analytic continuation of the reflection coefficient of the corresponding scattering problem) in a neighborhood of the point β = 0, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta^2=\omega_0^2-\omega^2}$$\end{document}, in the complex plane of the parameter β. When the pole is real and positive, it becomes an eigenvalue of the problem. It turns out that this is the case for certain perturbations (e.g., a square barrier of certain length); the pole then defines an eigenvalue (a trapped mode) embedded in the continuous spectrum of the first branch. When the conditions for the existence of an eigenvalue are not satisfied, the reflection coefficient changes abruptly in a neighborhood of the real part of the pole, rapidly growing from almost zero to almost one and then back to zero, as β passes through the resonant value, according to a formula of Breit–Wigner type familiar from quantum mechanics.
引用
收藏
页码:87 / 104
页数:17
相关论文
共 50 条
  • [31] RESONANT SCATTERING OF TRAPPED PARTICLES BY TOROIDAL PLASMA MODES
    COPPI, B
    SCHRAM, DC
    MINARDI, E
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (04): : 494 - &
  • [32] Total Reflection of Two Guided Waves for Embedded Trapped Modes
    Dai, Xiwen
    AIAA JOURNAL, 2021, 59 (01) : 131 - 139
  • [33] Embedded trapped modes for obstacles in two-dimensional waveguides
    McIver, M
    Linton, CM
    McIver, P
    Zhang, J
    Porter, R
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2001, 54 (02): : 273 - 293
  • [34] Dynamical behavior of a hybrid system of nonhomogeneous timoshenko beam with partial non-collocated inputs
    Zhong-Jie Han
    Gen-Qi Xu
    Journal of Dynamical and Control Systems, 2011, 17 : 77 - 121
  • [35] TIMOSHENKO BEAM FINITE-ELEMENTS USING THE ASSUMED MODES METHOD
    GANESAN, N
    ENGELS, RC
    JOURNAL OF SOUND AND VIBRATION, 1992, 156 (01) : 109 - 123
  • [36] Dynamical behavior of a hybrid system of nonhomogeneous timoshenko beam with partial non-collocated inputs
    Han, Zhong-Jie
    Xu, Gen-Qi
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2011, 17 (01) : 77 - 121
  • [37] Dynamic response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load
    Ding, Hu
    Shi, Kang-Li
    Chen, Li-Qun
    Yang, Shao-Pu
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 285 - 298
  • [38] Dynamic response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load
    Hu Ding
    Kang-Li Shi
    Li-Qun Chen
    Shao-Pu Yang
    Nonlinear Dynamics, 2013, 73 : 285 - 298
  • [39] SCATTERING FROM AN INFINITE DIELECTRIC CYLINDER EMBEDDED INTO ANOTHER
    UZUNOGLU, NK
    FIKIORIS, JG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (06): : 825 - 834
  • [40] Trapped degenerate modes in an embedded-core flat circular plate
    Yang, Qutong
    Liao, Jiahui
    Fan, Xiaoming
    Luo, Jingting
    Fu, Chen
    JOURNAL OF SOUND AND VIBRATION, 2023, 552