Characteristic and Ehrhart Polynomials

被引:0
作者
Andreas Blass
Bruce E. Sagan
机构
[1] University of Michigan,Department of Mathematics
[2] Michigan State University,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 1998年 / 7卷
关键词
Weyl group; hyperplane arrangement; subspace arrangement; Möbius function; characteristic polynomial; Ehrhart polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a subspace arrangement and let χ(A,t) be the characteristic polynomial of its intersection lattice L( A). We show that if the subspaces in A are taken from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{L}}({\mathcal{B}}_n)$$ \end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{B}}_n$$ \end{document} is the type B Weyl arrangement, then χ(A,t) counts a certain set of lattice points. One can use this result to study the partial factorization of χ(A,t) over the integers and the coefficients of its expansion in various bases for the polynomial ring R[t]. Next we prove that the characteristic polynomial of any Weyl hyperplane arrangement can be expressed in terms of an Ehrhart quasi-polynomial for its affine Weyl chamber. Note that our first result deals with all subspace arrangements embedded in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{B}}_n$$ \end{document} while the second deals with all finite Weyl groups but only their hyperplane arrangements.
引用
收藏
页码:115 / 126
页数:11
相关论文
共 15 条
[1]  
Athanasiadis C.A.(1996)Characteristic polynomials of subspace arrangements and finite fields Adv. in Math. 122 193-233
[2]  
Björner A.(1994)Linear decision trees, subspace arrangements and Möbius functions J. Amer. Math. Soc. 7 667-706
[3]  
Lovász L.(1995)The homology of “ Adv. in Math. 110 277-313
[4]  
Björner A.(1996)-equal” manifolds and related partition lattices Trans. Amer. Math. Soc. 348 1299-1327
[5]  
Welker V.(1994)Shellable nonpure complexes and posets I J. Alg. Combin. 3 17-76
[6]  
Björner A.(1992)Conjectures on the quotient ring of diagonal invariants Bull. London Math. Soc. 24 76-82
[7]  
Wachs M.(1964)The Z. Wahrscheinlichkeitstheorie 2 340-368
[8]  
Haiman M.(1994)-adic cohomology of hyperplane complements Contemp. Math. 178 277-309
[9]  
Lehrer G.(1981)On the foundations of combinatorial theory I. Theory of Möbius functions Invent. Math. 63 159-179
[10]  
Rota G.-C.(1981)Applications of the Hope trace formula to computing homology representations Amer. Math. Monthly 88 88-105