Hyperstability of the General Linear Functional Equation in Non-Archimedean Banach Spaces

被引:0
作者
Shujauddin Shuja
Ahmad F. Embong
Nor M. M. Ali
机构
[1] Universiti Teknologi Malaysia,Department of Mathematical Sciences, Faculty of Science
来源
p-Adic Numbers, Ultrametric Analysis and Applications | 2024年 / 16卷
关键词
Non-Archimedean Banach spaces; general linear functional equation; hyperstability; fixed point method;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:70 / 81
页数:11
相关论文
共 75 条
  • [1] Amrani A. El(2020)On the p-Adic Num. Ultrametr. Anal. Appl. 12 177-184
  • [2] Razouki A.(1950)-vector sequential topology on a non-Archimedean valued field J. Math. Soc. Japan 2 64-66
  • [3] Hassani R. A.(2017)On the stability of the linear transformation in Banach spaces Aequationes Math. 91 647-661
  • [4] Babahmed M.(2014)Hyperstability of the Jensen functional equation in ultrametric spaces Acta Math. Hung. 142 353-365
  • [5] Aoki T.(1949)Hyperstability of the Jensen functional equation Duke Math. J. 16 385-397
  • [6] Almahalebi M.(1951)Approximately isometric and multiplicative transformations on continuous function rings Bull. Amer. Math. Soc. 57 223-237
  • [7] Chahbi A.(2011)Classes of transformations and bordering transformations Nonlin. Anal.: Theory Meth. Appl. 74 6861-6867
  • [8] Bahyrycz A.(2013)A fixed point approach to the stability of functional equations in non-Archimedean metric spaces Abstr. Appl. Anal. 2013 0-267
  • [9] Piszczek M.(2013)Hyperstability and superstability Aequationes Math. 86 255-9
  • [10] Bourgin D. G.(2013)Remarks on hyperstability of the Cauchy functional equation Fixed Point Theo. Appl. 2013 1-40