A note on formulae for the generalized Drazin inverse of anti-triangular block operator matrices in Banach spaces

被引:0
作者
Daochang Zhang
Yu Jin
Dijana Mosić
机构
[1] Northeast Electric Power University,College of Sciences
[2] University of Niš,Faculty of Sciences and Mathematics
来源
Banach Journal of Mathematical Analysis | 2022年 / 16卷
关键词
Generalized Drazin inverse; Anti-triangular block operator matrix; block operator matrix; Banach space; 15A09; 46H05; 47A05; 65F20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we separately obtain new explicit expressions for the generalized Drazin inverse of anti-triangular block operator matrices under certain restrictions. As applications, we utilize the relationship between the anti-triangular block operator matrix and a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} block operator matrix to establish several formulae for the generalized Drazin inverse of a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} block operator matrix. Our results generalize and unify a series of results about the Drazin inverse and the generalized Drazin inverse in the literature. We give certain numerical examples to illustrate our results.
引用
收藏
相关论文
共 97 条
[1]  
Abad O(2021)A note on the generalized Drazin–Riesz invertible operators Ann. Funct. Anal. 12 55-667
[2]  
Zguitti H(2021)The representations of the g-Drazin inverse in a Banach algebra Hacet. J. Math. Stat. 50 659-877
[3]  
Abdolyousefi MS(2011)Representation of the Drazin inverse on solution of a class singular differential equations Linear Multilinear Algebra 59 863-966
[4]  
Bu C(2010)Some results on the group inverse of the block matrix with a sub-block of linear combination or product combination of matrices over skew fields Linear Multilinear Algebra 58 957-1576
[5]  
Zhang K(2013)Some results on the Drazin inverse of the anti-triangular matrices Linear Multilinear Algebra 61 1568-198
[6]  
Zhao J(1983)The Drazin inverse and systems of second order linear differential equations Linear Multilinear Algebra 14 195-425
[7]  
Bu C(1976)Applications of the Drazin inverse to linear systems of differential equations SIAM J. Appl. Math. 31 411-729
[8]  
Zhang K(2018)Perturbation analysis of the Moore-Penrose metric generalized inverse with applications Banach J. Math. Anal. 12 709-215
[9]  
Zhao J(2009)On the Drazin inverse of the sum of two operators and its application to operator matrices J. Math. Anal. Appl. 350 207-1895
[10]  
Bu C(2010)Expressions for the g-Drazin inverse of additive perturbed elements in a Banach algebra Linear Algebra Appl. 432 1885-1097