A set S⊆V(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S \subseteq V(G)$$\end{document} is a k-distance independent set of a graph G if the distance between every two vertices of S is greater than k. The k-distance independence number αk(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha _k(G)$$\end{document} of G is the maximum cardinality over all k-distance independent sets in G. A k-distance coloring of G is a function f from V(G) onto a set of positive integers (colors) such that for any two distinct vertices u and v at distance less than or equal to k we have f(u)≠f(v)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(u) \not = f(v)$$\end{document}. The k-distance chromatic number of a graph G is the smallest number of colors needed to have a k-distance coloring of G. The k-distance independence numbers and 2-distance chromatic numbers of Cartesian products of cycles are considered. A computer-aided method with the isomorphic rejection is used to determine the k-distance independence numbers of Cartesian products of cycles. By using these results, several lower and upper bounds on the maximal cardinality AqL(n,d)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A^L_q(n, d)$$\end{document} of a q-ary Lee code of length n with a minimum distance at least d are improved. It is also established that the 2-distance chromatic number of G equals |V(G)|α(G2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\lceil \frac{|V(G)|}{\alpha (G^2)} \right\rceil $$\end{document} for G=Cm□Cn□Ck\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G=C_m \Box C_n \Box C_k$$\end{document}, whenever k≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k \ge 3$$\end{document} and (m,n)∈{(3,3),(3,4),(3,5),(4,4)}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(m,n)\in \{(3,3), (3,4), (3,5), (4,4)\}$$\end{document} or k, m and n are all multiples of seven. Moreover, it is shown that the 2-distance chromatic number of the three-dimensional square lattice is equal to seven.