The k-Distance Independence Number and 2-Distance Chromatic Number of Cartesian Products of Cycles

被引:0
|
作者
Zehui Shao
Aleksander Vesel
Jin Xu
机构
[1] Peking University,School of Electronic Engineering and Computer Science
[2] Chengdu University,School of Information Science and Engineering
[3] University of Maribor,Faculty of Natural Sciences and Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2018年 / 41卷
关键词
Independence number; Lee code; Cartesian product; Cycle; Chromatic number; Square graph; 05C69; 05C15; 05C76; 05C85;
D O I
暂无
中图分类号
学科分类号
摘要
A set S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \subseteq V(G)$$\end{document} is a k-distance independent set of a graph G if the distance between every two vertices of S is greater than k. The k-distance independence number αk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _k(G)$$\end{document} of G is the maximum cardinality over all k-distance independent sets in G. A k-distance coloring of G is a function f from V(G) onto a set of positive integers (colors) such that for any two distinct vertices u and v at distance less than or equal to k we have f(u)≠f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u) \not = f(v)$$\end{document}. The k-distance chromatic number of a graph G is the smallest number of colors needed to have a k-distance coloring of G. The k-distance independence numbers and 2-distance chromatic numbers of Cartesian products of cycles are considered. A computer-aided method with the isomorphic rejection is used to determine the k-distance independence numbers of Cartesian products of cycles. By using these results, several lower and upper bounds on the maximal cardinality AqL(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^L_q(n, d)$$\end{document} of a q-ary Lee code of length n with a minimum distance at least d are improved. It is also established that the 2-distance chromatic number of G equals |V(G)|α(G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\lceil \frac{|V(G)|}{\alpha (G^2)} \right\rceil $$\end{document} for G=Cm□Cn□Ck\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=C_m \Box C_n \Box C_k$$\end{document}, whenever k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document} and (m,n)∈{(3,3),(3,4),(3,5),(4,4)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m,n)\in \{(3,3), (3,4), (3,5), (4,4)\}$$\end{document} or k, m and n are all multiples of seven. Moreover, it is shown that the 2-distance chromatic number of the three-dimensional square lattice is equal to seven.
引用
收藏
页码:1377 / 1391
页数:14
相关论文
共 50 条
  • [1] The k-Distance Independence Number and 2-Distance Chromatic Number of Cartesian Products of Cycles
    Shao, Zehui
    Vesel, Aleksander
    Xu, Jin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1377 - 1391
  • [2] 2-Distance chromatic number of some graph products
    Ghazi, Ghazale
    Rahbarnia, Freydoon
    Tavakoli, Mostafa
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (02)
  • [3] DISTANCE LAPLACIAN EIGENVALUES OF GRAPHS, AND CHROMATIC AND INDEPENDENCE NUMBER
    Pirzada, Shariefuddin
    Khan, Saleem
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2024, 67 (01): : 145 - 159
  • [4] 2-distance colorings of some direct products of paths and cycles
    Kim, Byeong Moon
    Song, Byung Chul
    Rho, Yoomi
    DISCRETE MATHEMATICS, 2015, 338 (10) : 1730 - 1739
  • [5] On the chromatic number and independence number of hypergraph products
    Mubayi, Dhruv
    Rodl, Vojtech
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (01) : 151 - 155
  • [6] ON THE DISTRIBUTION OF DISTANCE SIGNLESS LAPLACIAN EIGENVALUES WITH GIVEN INDEPENDENCE AND CHROMATIC NUMBER
    Pirzada, Shariefuddin
    Khan, Saleem
    Belardo, Francesco
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, : 111 - 128
  • [7] The 2-distance coloring of the Cartesian product of cycles using optimal Lee codes
    Kim, Jon-Lark
    Kim, Seog-Jin
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (18) : 2222 - 2228
  • [8] A note on the chromatic number of the square of the Cartesian product of two cycles
    Shao, Zehui
    Vesel, Aleksander
    DISCRETE MATHEMATICS, 2013, 313 (09) : 999 - 1001
  • [9] Distance graphs with maximum chromatic number
    Barajas, Javier
    Serra, Oriol
    DISCRETE MATHEMATICS, 2008, 308 (08) : 1355 - 1365
  • [10] Antipodal number of Cartesian products of complete graphs with cycles
    Kumar, Kush
    Panigrahi, Pratima
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) : 219 - 231