Generalized inflection points of very general effective divisors on smooth curves

被引:0
作者
Coppens M. [1 ,2 ]
机构
[1] Departement Industrieel Ingenieur en Biotechniek, Katholieke Hogeschool Kempen, 2440 Geel
[2] Dept. Wiskunde Groep Algebra, K.U. Leuven, 2440 Geel
来源
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry | 2011年 / 52卷 / 1期
关键词
Curve; Inflection point; Linear system;
D O I
10.1007/s13366-011-0016-z
中图分类号
学科分类号
摘要
Let E be a very general effective divisor of degree d on a smooth curve C of genus g. We study inflection points on linear systems {pipe}aE{pipe} for an integer a ≥ 1. They are called generalized inflection points of the invertible sheaf OC(E). In case P ∉ E is a generalized inflection point of OC(E) then it is a normal generalized inflection point. In case P ∉ E then P has minimal vanishing sequences for E. © 2011 The Managing Editors.
引用
收藏
页码:125 / 132
页数:7
相关论文
共 7 条
[1]  
Arbarello E., Cornalba M., Su una congettura di Petri, Comment. Math. Helv., 56, pp. 1-38, (1981)
[2]  
Coppens M., Generalized inflection points of very general line bundles on smooth curves, Ann. Mat. Pura Appl., 187, 4, pp. 605-609, (2008)
[3]  
Farkas G., Higher ramification and varieties of secant divisors on the generic curve, J. Lond. Math. Soc., 78, pp. 418-440, (2008)
[4]  
Grothendieck A., Techniques de construction et théorèmes d'existence en géométrie algébrique IV, Les schémas de Hilbert, 13, 221, (1960)
[5]  
Horikawa E., On deformations of holomorphic maps I, J. Math. Soc. Japan, 25, pp. 372-376, (1973)
[6]  
Lange H., Moduli spaces of algebraic curves with rational maps, Math. Proc. Camb. Philos. Soc., 78, pp. 283-292, (1975)
[7]  
Sernesi E., Deformations of algebraic schemes, Grundlehren der mathematischen Wissenschaften, 334, (2006)