Scalar clouds in charged stringy black hole-mirror system

被引:0
作者
Ran Li
Junkun Zhao
Xinghua Wu
Yanming Zhang
机构
[1] Henan Normal University,Department of Physics
来源
The European Physical Journal C | 2015年 / 75卷
关键词
Black Hole; Scalar Field; Kerr Black Hole; Black Hole Charge; Black Hole Background;
D O I
暂无
中图分类号
学科分类号
摘要
It was reported that massive scalar fields can form bound states around Kerr black holes (Herdeiro and Radu, Phys. Rev. Lett. 112:221101, 2014). These bound states are called scalar clouds; they have a real frequency ω=mΩH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =m\Omega _\mathrm{H}$$\end{document}, where m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} is the azimuthal index and ΩH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _\mathrm{H}$$\end{document} is the horizon angular velocity of Kerr black hole. In this paper, we study scalar clouds in a spherically symmetric background, i.e. charged stringy black holes, with the mirror-like boundary condition. These bound states satisfy the superradiant critical frequency condition ω=qΦH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =q\Phi _\mathrm{H}$$\end{document} for a charged scalar field, where q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} is the charge of the scalar field, and ΦH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _\mathrm{H}$$\end{document} is the horizon’s electrostatic potential. We show that, for the specific set of black hole and scalar field parameters, the clouds are only possible for specific mirror locations rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document}. It is shown that analytical results of the mirror location rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document} for the clouds perfectly coincide with numerical results in the qQ≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qQ\ll 1$$\end{document} regime. We also show that the scalar clouds are also possible when the mirror locations are close to the horizon. Finally, we provide an analytical calculation of the specific mirror locations rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document} for the scalar clouds in the qQ≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qQ\gg 1$$\end{document} regime.
引用
收藏
相关论文
共 50 条
  • [41] Scalar's quasibound states in cosmological black hole background
    Senjaya, David
    JOURNAL OF HIGH ENERGY ASTROPHYSICS, 2024, 43 : 132 - 139
  • [42] Scalar field in massive BTZ black hole and entanglement entropy
    周宇霆
    况小梅
    Chinese Physics C, 2020, (01) : 132 - 138
  • [43] Entropy of scalar field near a Schwarzschild black hole horizon
    Setare, M. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (30): : 6183 - 6190
  • [44] Scalar field in massive BTZ black hole and entanglement entropy
    Zhou, Yu-Ting
    Kuang, Xiao-Mei
    CHINESE PHYSICS C, 2020, 44 (01)
  • [45] Conformal scalar propagation on the Schwarzschild black-hole geometry
    George Tsoupros
    General Relativity and Gravitation, 2010, 42 : 1103 - 1138
  • [46] Conformal scalar propagation on the Schwarzschild black-hole geometry
    Tsoupros, George
    GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (05) : 1103 - 1138
  • [47] Strong deflection lensing by charged black holes in scalar–tensor gravity
    Ernesto F. Eiroa
    Carlos M. Sendra
    The European Physical Journal C, 2014, 74
  • [48] Absorption of massless scalar waves by electrically charged regular black holes
    de Paula, Marco A. A.
    Leite, Luiz C. S.
    Crispino, Luis C. B.
    SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 4410 - 4419
  • [49] Dynamics of scalar shell for rotating and charged rotating BTZ black holes
    Sharif, M.
    Javed, Faisal
    MODERN PHYSICS LETTERS A, 2020, 35 (02)
  • [50] On-axis scattering of scalar fields by charged rotating black holes
    Leite, Luiz C. S.
    Benone, Carolina L.
    Crispino, Luis C. B.
    PHYSICS LETTERS B, 2019, 795 : 496 - 501