Scalar clouds in charged stringy black hole-mirror system

被引:0
|
作者
Ran Li
Junkun Zhao
Xinghua Wu
Yanming Zhang
机构
[1] Henan Normal University,Department of Physics
来源
The European Physical Journal C | 2015年 / 75卷
关键词
Black Hole; Scalar Field; Kerr Black Hole; Black Hole Charge; Black Hole Background;
D O I
暂无
中图分类号
学科分类号
摘要
It was reported that massive scalar fields can form bound states around Kerr black holes (Herdeiro and Radu, Phys. Rev. Lett. 112:221101, 2014). These bound states are called scalar clouds; they have a real frequency ω=mΩH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =m\Omega _\mathrm{H}$$\end{document}, where m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} is the azimuthal index and ΩH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _\mathrm{H}$$\end{document} is the horizon angular velocity of Kerr black hole. In this paper, we study scalar clouds in a spherically symmetric background, i.e. charged stringy black holes, with the mirror-like boundary condition. These bound states satisfy the superradiant critical frequency condition ω=qΦH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =q\Phi _\mathrm{H}$$\end{document} for a charged scalar field, where q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} is the charge of the scalar field, and ΦH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _\mathrm{H}$$\end{document} is the horizon’s electrostatic potential. We show that, for the specific set of black hole and scalar field parameters, the clouds are only possible for specific mirror locations rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document}. It is shown that analytical results of the mirror location rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document} for the clouds perfectly coincide with numerical results in the qQ≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qQ\ll 1$$\end{document} regime. We also show that the scalar clouds are also possible when the mirror locations are close to the horizon. Finally, we provide an analytical calculation of the specific mirror locations rm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_\mathrm{m}$$\end{document} for the scalar clouds in the qQ≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qQ\gg 1$$\end{document} regime.
引用
收藏
相关论文
共 50 条
  • [21] Quantum thermal effects of a radiating rotating charged black hole
    Jiliang Jing
    Yongjiu Wang
    International Journal of Theoretical Physics, 1997, 36 : 1745 - 1752
  • [22] Penrose process in a charged axion–dilaton coupled black hole
    Chandrima Ganguly
    Soumitra SenGupta
    The European Physical Journal C, 2016, 76
  • [23] Charged black hole bombs in a Minkowski cavity
    Dias, Oscar J. C.
    Masachs, Ramon
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (18)
  • [24] Tunneling Radiation of the Charged Particles for Charged Spherical Black Hole in VGM
    Men Quan Liu
    Shu Zheng Yang
    International Journal of Theoretical Physics, 2007, 46 : 63 - 69
  • [25] Tunneling radiation of the charged particles for charged spherical black hole in VGM
    Liu, Men Quan
    Yang, Shu Zheng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (01) : 65 - 71
  • [26] Conformal scalar propagation inside the Schwarzschild black hole
    George Tsoupros
    General Relativity and Gravitation, 2012, 44 : 309 - 351
  • [27] Conformal scalar propagation inside the Schwarzschild black hole
    Tsoupros, George
    GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (02) : 309 - 351
  • [28] Scalar clouds around Kerr-Sen black holes
    Huang, Yang
    Liu, Dao-Jun
    Zhai, Xiang-Hua
    Li, Xin-Zhou
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (15)
  • [29] Greybody factors of massive charged fermionic fields in a charged two-dimensional dilatonic black hole
    Ramón Bécar
    P. A. González
    Joel Saavedra
    Yerko Vásquez
    The European Physical Journal C, 2015, 75
  • [30] Quantum Electron Levels in the Field of a Charged Black Hole
    Dokuchaev, V. I.
    Eroshenko, Yu N.
    PHYSICS OF ATOMIC NUCLEI, 2015, 78 (13) : 1520 - 1522