Ulrich bundles on a general blow-up of the plane

被引:0
|
作者
Ciro Ciliberto
Flaminio Flamini
Andreas Leopold Knutsen
机构
[1] Università di Roma Tor Vergata,Dipartimento di Matematica
[2] University of Bergen,Department of Mathematics
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2023年 / 202卷
关键词
Ulrich vector bundles; Stability; Moduli spaces; Primary 14J60; Secondary 14C20; 14D06; 14D20; 14H50;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that on Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}, the plane blown-up at n very general points, there are Ulrich line bundles with respect to a line bundle corresponding to curves of degree m passing simply through the n blown-up points, with m⩽2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\leqslant 2\sqrt{n}$$\end{document} and such that the line bundle in question is very ample on Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}. We prove that the number of these Ulrich line bundles tends to infinity with n. We also prove the existence of slope-stable rank-r Ulrich vector bundles on Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document}, for n⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 2$$\end{document} and any r⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \geqslant 1$$\end{document} and we compute the dimensions of their moduli spaces. These computations imply that Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n$$\end{document} is Ulrich wild.
引用
收藏
页码:1835 / 1854
页数:19
相关论文
共 50 条
  • [31] Instability for axisymmetric blow-up solutions to incompressible Euler equations
    Lafleche, Laurent
    Vasseur, Alexis F.
    Vishik, Misha
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 155 : 140 - 154
  • [32] Ein–Lazarsfeld–Mustopa conjecture for the blow-up of a projective space
    Rosa M. Miró-Roig
    Marti Salat-Moltó
    Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 221 - 233
  • [33] Blow-up solutions for the modified b-family of equations
    Wang, Ying
    Zhu, Min
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 150 : 19 - 37
  • [34] Blow-up profile for the complex Ginzburg-Landau equation
    Masmoudi, Nader
    Zaag, Hatem
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (07) : 1613 - 1666
  • [35] Blow-up for trapped dipolar quantum gases with large energy
    Gao, Yanfang
    Wang, Zhiyong
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (12)
  • [36] Asymptotics and Blow-up for Mass Critical Nonlinear Dispersive Equations
    Merle, Frank
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (02) : 579 - 590
  • [37] Blow-up set for type I blowing up solutions for a semilinear heat equation
    Fujishima, Yohei
    Ishige, Kazuhiro
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (02): : 231 - 247
  • [38] Exponential decay and blow-up results for a viscoelastic equation with variable sources
    Le, Nhan Cong
    Le, Truong Xuan
    Nguyen, Y. Van
    APPLICABLE ANALYSIS, 2023, 102 (03) : 782 - 799
  • [39] Blow-up phenomena for a singular nonlocal viscoelastic problem with logarithmic nonlinearity
    Di, Huafei
    Qiu, Yi
    Peng, Xiaoming
    APPLIED MATHEMATICS LETTERS, 2024, 150
  • [40] STANDING-SPHERE BLOW-UP SOLUTIONS FOR THE NONLINEAR HEAT EQUATION
    Duan, Senhao
    Nouaili, Nejla
    Zaag, Hatem
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (05) : 1434 - 1453