We prove that on Xn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_n$$\end{document}, the plane blown-up at n very general points, there are Ulrich line bundles with respect to a line bundle corresponding to curves of degree m passing simply through the n blown-up points, with m⩽2n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m\leqslant 2\sqrt{n}$$\end{document} and such that the line bundle in question is very ample on Xn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_n$$\end{document}. We prove that the number of these Ulrich line bundles tends to infinity with n. We also prove the existence of slope-stable rank-r Ulrich vector bundles on Xn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_n$$\end{document}, for n⩾2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\geqslant 2$$\end{document} and any r⩾1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r \geqslant 1$$\end{document} and we compute the dimensions of their moduli spaces. These computations imply that Xn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_n$$\end{document} is Ulrich wild.
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
Wang, Guangwu
Guo, Boling
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Engn Phys, Inst Appl Phys & Computat Math, Beijing 100088, Peoples R ChinaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
机构:
Northwestern Polytech Univ, Sch Math & Stat, Xian 710072, Peoples R China
Northwestern Polytech Univ Shenzhen, Res & Inst, 45 Gaoxin South 9th Rd, Shenzhen 518063, Peoples R ChinaNorthwestern Polytech Univ, Sch Math & Stat, Xian 710072, Peoples R China
Bai, Xueli
Zhou, Maolin
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNorthwestern Polytech Univ, Sch Math & Stat, Xian 710072, Peoples R China