We prove that on Xn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_n$$\end{document}, the plane blown-up at n very general points, there are Ulrich line bundles with respect to a line bundle corresponding to curves of degree m passing simply through the n blown-up points, with m⩽2n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m\leqslant 2\sqrt{n}$$\end{document} and such that the line bundle in question is very ample on Xn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_n$$\end{document}. We prove that the number of these Ulrich line bundles tends to infinity with n. We also prove the existence of slope-stable rank-r Ulrich vector bundles on Xn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_n$$\end{document}, for n⩾2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\geqslant 2$$\end{document} and any r⩾1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r \geqslant 1$$\end{document} and we compute the dimensions of their moduli spaces. These computations imply that Xn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_n$$\end{document} is Ulrich wild.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy
Ciliberto, Ciro
Flamini, Flaminio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy
Flamini, Flaminio
Knutsen, Andreas Leopold
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bergen, Dept Math, Postboks 7800, N-5020 Bergen, NorwayUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci, I-00173 Rome, Italy