The check of optimality conditions in nonsmooth programming

被引:0
作者
Qinghi Y. [1 ]
机构
[1] Department of Mathematics, the Graduate School, Chinese University of Science and Technology, Beijing
关键词
Nonsmooth programming; Optimality conditions; Regularity; Semismooth;
D O I
10.1007/s11766-998-0029-z
中图分类号
学科分类号
摘要
In this paper, the geometrical meaning of two basic optimality conditions for a class of common cases in nonsmooth programming is exposed. Thus it makes the check of optimality conditions for this class of nonsmooth programming problem much easier. © 1998, Springer Verlag. All rights reserved.
引用
收藏
页码:347 / 350
页数:3
相关论文
共 11 条
[1]  
Ben-Tel, A., Zowe, J., Necessary and sufficient optimality condition for a class of nonsmooth minimization problem (1982) Math. Programming, 24, pp. 70-91
[2]  
Chaney, R., Second-order sufficient conditions for nondifferentiable programming, SIAM (1982) J. Control Optim, 20, pp. 20-33
[3]  
Chaney, R., Second-order directional derivatives for nonsmooth functions (1986) J. Math. Anal. Appl, 128, pp. 495-511
[4]  
Chaney, R., Second-order necessary conditions in semismooth optimization (1988) Math. Programming, 40, pp. 95-109
[5]  
Chancy, R., Second-order sufficient conditions in nonsmooth optimization (1988) Math. Oper. Res, 13, pp. 660-673
[6]  
Clarke, H., (1983) Optimization and Nonsmooth Analysis, , Wiley & Sons, New York
[7]  
Huang, L.R., Ng, K.F., Second-order necessary and sufficient conditions for nonsmooth optimization (1994) Math. Programming, 66, pp. 379-402
[8]  
Ioffe, A., Necessary and sufficient conditions for a local minimumz 3 (1979) SIAM J. Control Optim, 17, pp. 266-288
[9]  
Mifflin, R., Semismooth and semiconvex functions in constrained optimization, SIAM (1977) J. Control Optim, 15, pp. 959-972
[10]  
Rockafellar, R., (1970) Convex Analysis, , Princeton University Press, New Jersey