The excess molar heat capacities, CPE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{{P}}^{\text{E}} } \right)_{12} $$\end{document}, of binary mixtures of o-chlorotoluene (1) with pyridine, α-, β- or γ-picoline, benzene, toluene or o-xylene (2) have been measured as a function of composition at 298.15, 303.15 and 308.15 K using a micro differential scanning calorimeter (Model-μDSC 7 Evo). The CPE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{{P}}^{\text{E}} } \right)_{12} $$\end{document} data have been fitted with the Redlich–Kister equation to calculate binary adjustable parameters along with standard deviations. The sign and magnitude of values of o-chlorotoluene (1) + pyridine or α- or β-picoline (2) are dictated by the relative proportion of components in the mixtures. However CPE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{{P}}^{\text{E}} } \right)_{12} $$\end{document} values for o-chlorotoluene (1) + γ-picoline (2) mixture are positive and CPE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{{P}}^{\text{E}} } \right)_{12} $$\end{document} values for o-chlorotoluene (1) + benzene or toluene or o-xylene (2) mixtures are negative over the entire mole fraction range. The topology of the constituent molecules has been employed (Graph theory) to determine the CPE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{{P}}^{\text{E}} } \right)_{12} $$\end{document} data of the studied mixtures. It has been observed that CPE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{{P}}^{\text{E}} } \right)_{12} $$\end{document} values obtained by Graph theory are in agreement with the experimental values.