Analyzing the topography of thermosolutal rotating convection of a Casson fluid in a sparsely packed porous channel

被引:7
作者
Babu, A. Benerji [1 ]
Bixapathi, Sapavat [1 ]
机构
[1] Natl Inst Technol Warangal, Dept Math, Warangal, Telangana, India
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 05期
关键词
NATURAL-CONVECTION; THERMOHALINE CONVECTION; THERMAL-INSTABILITY; STABILITY; LAYER; BOUNDARY; ONSET; FLOW;
D O I
10.1140/epjp/s13360-024-05207-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper discusses the thermosolutal rotating convection of a Casson fluid in a sparsely packed porous channel with variable boundaries. For linear analyses, the normal mode method is utilized to solve the governing equations. The system of equations are solved using a one-term Galerkin method for finding critical Rayleigh number. Meanwhile, the eigenvalue problem is numerically solved using the Chebyshev collocation method. Graphical representations are provided of the effects of the Casson fluid (beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}) and separation parameters (chi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}) on velocity, temperature, and solute concentration profiles for fixed parameter values of Rayleigh number (R), Darcy number (Da), and Taylor number (Ta). Influence of Casson fluid and separation parameters is demonstrated for the system growth rate, stability curves, and critical boundary conditions. However, it turns out that the Darcy number, Taylor number, Lewis number, and Prandtl number all stabilize the system in an unsteady flow. Multiple-scale analysis is used to develop the coupled Landau-Ginzburg equation in weakly nonlinear theory. Furthermore, the study develops amplitude cellular convections in a stability region.
引用
收藏
页数:19
相关论文
共 44 条
[1]   THERMAL INSTABILITY OF A NANOFLUID SATURATING A ROTATING ANISOTROPIC POROUS MEDIUM [J].
Agarwal, Shilpi ;
Bhadauria, B. S. ;
Siddheshwar, P. G. .
SPECIAL TOPICS & REVIEWS IN POROUS MEDIA-AN INTERNATIONAL JOURNAL, 2011, 2 (01) :53-64
[2]   Rayleigh-Benard convection of a viscoplastic liquid in a trapezoidal enclosure [J].
Aghighi, M. S. ;
Ammar, A. ;
Masoumi, H. ;
Lanjabi, A. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 180
[3]   Rayleigh-Benard convection of Casson fluids [J].
Aghighi, M. S. ;
Ammar, A. ;
Metivier, C. ;
Gharagozlu, M. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2018, 127 :79-90
[4]   Partial differential equations modeling of thermal transportation in Casson nanofluid flow with arrhenius activation energy and irreversibility processes [J].
Al Oweidi, Khalid Fanoukh ;
Jamshed, Wasim ;
Goud, B. Shankar ;
Ullah, Imran ;
Usman, Siti Suzilliana Putri ;
Mohamed Isa, Siti Suzilliana Putri M. ;
El Din, Sayed ;
Guedri, Kamel ;
Jaleel, Refed Adnan .
SCIENTIFIC REPORTS, 2022, 12 (01)
[5]   Weakly nonlinear thermohaline rotating convection in a sparsely packed porous medium [J].
Babu, A. Benerji ;
Anilkumar, Devarapu ;
Rao, N. Venkata Koteswara .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 188
[6]   Weakly nonlinear thermohaline convection in a sparsely packed porous medium due to horizontal magnetic field [J].
Babu, A. Benerji ;
Rao, N. Venkata Koteswara ;
Tagare, S. G. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (08)
[7]   Nonlinear magnetoconvection in a rotating fluid due to thermal and compositional buoyancy with anisotropic diffusivities [J].
Babu, Avula Benerji ;
Reddy, G. Shiva Kumar ;
Tagare, Suhas G. .
HEAT TRANSFER-ASIAN RESEARCH, 2020, 49 (01) :335-355
[8]  
Cahyani A., 2019, IOP Conference Series: Earth and Environmental Science, V355, DOI 10.1088/1755-1315/355/1/012041
[9]  
Casson N., 1959, RHEOLOGY DISPERSE SY, P84, DOI DOI 10.1002/9781444391060
[10]  
Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability, P35