A note on an inequality involving Jordan product in Euclidean Jordan algebras

被引:0
作者
Guoqiang Wang
Jiyuan Tao
Lingchen Kong
机构
[1] Shanghai University of Engineering Science,College of Fundamental Studies
[2] Loyola University Maryland,Department of Mathematics and Statistics
[3] Beijing Jiaotong University,Department of Applied Mathematics
来源
Optimization Letters | 2016年 / 10卷
关键词
Euclidean Jordan algebra; Majorization;
D O I
暂无
中图分类号
学科分类号
摘要
In a most recent paper, Yang et al. (Appl Math Comput 230:616–628, 2014) proved an important inequality on a simple Euclidean Jordan algebra by using a case-by-case analysis. In this paper, we improve this inequality in any Euclidean Jordan algebras and the proof is not based on a case-by-case analysis.
引用
收藏
页码:731 / 736
页数:5
相关论文
共 50 条
[31]   Some majorization inequalities induced by Schur products in Euclidean Jordan algebras [J].
Gowda, M. Seetharama .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 600 :1-21
[32]   The Holder continuity of Lowner's operator in Euclidean Jordan algebras [J].
Lu, Nan ;
Huang, Zheng-Hai .
OPTIMIZATION LETTERS, 2013, 7 (08) :1691-1699
[33]   THE FISCHER-BURMEISTER COMPLEMENTARITY FUNCTION ON EUCLIDEAN JORDAN ALGEBRAS [J].
Kong, Lingchen ;
Tuncel, Levent ;
Xiu, Naihua .
PACIFIC JOURNAL OF OPTIMIZATION, 2010, 6 (02) :423-440
[34]   COMMUTATION PRINCIPLES IN EUCLIDEAN JORDAN ALGEBRAS AND NORMAL DECOMPOSITION SYSTEMS [J].
Gowda, M. Seetharama ;
Jeong, Juyoung .
SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (03) :1390-1402
[35]   A generalization of the Craig-Sakamoto theorem to Euclidean Jordan algebras [J].
Tao, J. ;
Wang, Guoqiang .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 :134-145
[36]   Strict Semimonotonicity Property of Linear Transformations on Euclidean Jordan Algebras [J].
Tao, J. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 144 (03) :575-596
[37]   Simultaneous spectral decomposition in Euclidean Jordan algebras and related systems [J].
Gowda, M. Seetharama .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21) :6535-6547
[38]   Strict Semimonotonicity Property of Linear Transformations on Euclidean Jordan Algebras [J].
J. Tao .
Journal of Optimization Theory and Applications, 2010, 144 :575-596
[39]   More results on column sufficiency property in Euclidean Jordan algebras [J].
J. Tao ;
I. Jeyaraman ;
G. Ravindran .
Annals of Operations Research, 2016, 243 :229-243
[40]   GENERALIZED SUBDIFFERENTIALS OF SPECTRAL FUNCTIONS OVER EUCLIDEAN JORDAN ALGEBRAS [J].
Lourenco, Bruno F. ;
Takeda, Akiko .
SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (04) :3387-3414