On Convergence of the Accelerated Newton Method Under Generalized Lipschitz Conditions

被引:0
作者
Shakhno S.М. [1 ]
机构
[1] Franko Lviv National University, Lviv
关键词
Newton Method; Lipschitz Condition; Local Convergence; Divided Difference; Inexact Newton Method;
D O I
10.1007/s10958-015-2645-5
中图分类号
学科分类号
摘要
We study the problem of local convergence of the accelerated Newton method for the solution of nonlinear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet derivatives. We show that the accelerated method is characterized by the quadratic order of convergence and compare it with the classical Newton method. © 2015, Springer Science+Business Media New York.
引用
收藏
页码:16 / 26
页数:10
相关论文
共 11 条
  • [1] Bartish M.Y., Shakhno S.M., On the Newton method with accelerated convergence,, Vestn. Kiev. Univ., Modelir. Optimiz. Slozhn. Sistem, 6, pp. 62-66, (1987)
  • [2] Bartish M.Y., Shakhno S.M., On a Class of Newton-Type Iterative Methods [in Russian], Deposited at UkrNIINTI 17.09.87, No. 2580-Uk87, Lviv, (1987)
  • [3] Kantorovich L.V., Akilov G.P., Functional Analysis [in Russian], (1984)
  • [4] Ortega J.M., Rheinboldt W.C., Iterative Solution of Nonlinear Equations in Several Variables, (1970)
  • [5] Shakhno S.M., Steffensen method under generalized Lipschitz conditions for the first-order divided differences, Mat. Stud., 31, 1, pp. 90-95, (2009)
  • [6] Shakhno S.M., Investigation of Convergence of the Accelerated Newton Method [in Russian], Deposited at UkrNIINTI 17.09.87, No. 2579-Uk87, Lviv, (1987)
  • [7] Chen J., Li W., Convergence behavior of inexact Newton methods under weak Lipschitz condition, J. Comput. Appl. Math., 191, 1, pp. 143-164, (2006)
  • [8] Shakhno S.M., On the secant method under generalized Lipschitz conditions for the divided difference operator, Proc. Appl. Math. Mech., 7, 1, pp. 2060083-2060084, (2007)
  • [9] Wang X., Convergence of Newton’s method and uniqueness of the solution of equations in Banach space, IMA, J. Numer. Anal., 20, 1, pp. 123-134, (2000)
  • [10] Werner W., Newton-like methods for the computation of fixed points, Comput. & Math. Appl., 10, 1, pp. 77-86, (1984)