The Mixed Discontinuous Galerkin Method for Transmission Eigenvalues for Anisotropic Medium

被引:0
作者
Shixi Wang
Hai Bi
Yidu Yang
机构
[1] Guizhou Normal University,School of Mathematical Sciences
来源
Journal of Scientific Computing | 2023年 / 96卷
关键词
Transmission eigenvalue problem; Modified transmission eigenvalue problem; The mixed discontinuous Galerkin method; -Coercivity; The ; error estimates; 65N25; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
Transmission eigenvalues play an important role in the inverse scattering theory. In this paper, we study the mixed discontinuous Galerkin method for the transmission eigenvalue problem and the modified transmission eigenvalue problem for anisotropic inhomogeneous medium in Ω⊂Rd(d=2,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega \subset {\mathbb {R}}^d\,(d=2,3)$$\end{document}. We use the T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}$$\end{document}-coercivity, Gårding’s inequality, the consistency of the DG method and the compact embeddings of broken Sobolev spaces to prove that the discrete solution operator Kh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {K}}_{h}$$\end{document} converges pointwise to the solution operator K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {K}}$$\end{document} and {Kh}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\mathbb {K}}_{h}\}$$\end{document} is collectively compact. Then we employ the spectral approximation theory and the approximation property of the DG finite element space to prove the hp a priori error estimate of approximate eigenpairs.
引用
收藏
相关论文
共 76 条
  • [1] Colton D(2010)Analytical and computational methods for transmission eigenvalues Inverse Problems 26 1132-1143
  • [2] Monk P(2015)Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem Comput. Math. Appl. 69 1613-1622
  • [3] Sun J(2016)A spectral projection method for transmission eigenvalues Sci. China Math. 59 A1383-A1403
  • [4] An J(2016)Mixed methods for the Helmholtz transmission eigenvalues SIAM J. Sci. Comput. 38 326-338
  • [5] Shen J(2016)IP methods for the transmission eigenvalue problem J. Sci. Comput. 68 2120-2138
  • [6] Zeng F(2017)A IMA J. Numer. Anal. 37 1529-1542
  • [7] Sun J(2017) linear finite element method for two fourth-order eigenvalue problems Sci. China Math. 60 422-435
  • [8] Xu L(2020)An Comput. Methods Appl. Mech. Engrg. 360 586-604
  • [9] Yang Y(2013)-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues J. Comput. Phys. 255 2517-2537
  • [10] Bi H(2017)A type of adaptive J. Sci. Comput. 72 1493-1529