A Computer-Aided Approach for Voltage Reference Circuit Design

被引:0
作者
Fabián Olivera
Antonio Petraglia
机构
[1] Federal University of Rio de Janeiro,EPOLI/PEE/COPPE
来源
Analog Integrated Circuits and Signal Processing | 2016年 / 89卷
关键词
CAD; multi-threshold; mutual-compensation; voltage-reference;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a computer-aided design (CAD) approach for voltage reference circuits by controlling main characteristics, such as temperature coefficient, power consumption, mismatch caused by the manufacturing process, transistor area and output noise. The CAD tool and the proposed methodology allow the designer to obtain accurate and optimum initial circuit sizing, thereby reducing the large number of computer runs usually required in voltage reference circuit designs. An illustrative example was carried out in a 180 nm CMOS process and verified by post layout simulations, whose results were in close agreement with the tool predictions, as shown in this paper. The reference circuit achieves an output voltage of 500 mV, a temperature coefficient of 15.19 ppm/∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$^\circ $$ \end{document}C over the temperature range of -40 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$^\circ $$ \end{document}C to 100 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$^\circ $$ \end{document}C, a maximum quiescent current of 5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mu $$ \end{document}A, a power supply rejection ratio of -57 dB, and a line regulation of 0.250 % from 1.2 V to 1.8 V supply voltage. The chip occupies an area of 0.072 mm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$^2$$ \end{document}.
引用
收藏
页码:511 / 520
页数:9
相关论文
共 32 条
[1]  
Arnaud A(2004)Consistent noise models for analysis and design of cmos circuits IEEE Transactions on Circuits and Systems I: Regular Papers 51 1909-1915
[2]  
Galup-Montoro C(2014)Sub-1 v band-gap based and mos threshold-voltage based voltage references in 0.13 Analog Integrated Circuits and Signal Processing 82 25-37
[3]  
Colombo DM(2015)m CMOS IEEE Transactions on Circuits and Systems I: Regular Papers 62 662-670
[4]  
Wirth G(2005)A 1.2-v 4.2-ppm/ IEEE Journal of Solid-State Circuits 40 1212-1224
[5]  
Bampi S(2006)C high-order curvature-compensated CMOS bandgap reference Design Test of Computers, IEEE 23 20-29
[6]  
Duan Q(2002)Device mismatch and tradeoffs in the design of analog circuits IEEE Journal of Solid-State Circuits 37 526-530
[7]  
Roh J(2014)Mosfet mismatch modeling: a new approach IEEE Transactions on Circuits and Systems I: Regular Papers 61 1026-1035
[8]  
Kinget P(2002)A sub-1-v 15-ppm/ IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 21 517-533
[9]  
Klimach H(2009)C CMOS bandgap voltage reference without requiring low threshold voltage device Circuits, Devices Systems, IET 3 233-238
[10]  
Arnaud A(2012)A novel 1.2-v 4.5-ppm/ IEEE Transactions on Circuits and Systems II: Express Briefs 59 341-345