Liouville-type theorems for fractional Hardy–Hénon systems

被引:0
|
作者
Kui Li
Meng Yu
Zhitao Zhang
机构
[1] Zhengzhou University,School of Mathematics and Statistics
[2] Goethe-Universität Frankfurt,Institut für Mathematik
[3] Chinese Academy of Sciences,HLM, Academy of Mathematics and Systems Science
[4] University of Chinese Academy of Sciences,School of Mathematical Sciences
[5] Jiangsu University,School of Mathematical Sciences
关键词
Liouville-type theorem; Fractional-order elliptic system; Hénon-Lane-Emden conjecture; Methods of scaling spheres; Integral system; 35J30; 35J75; 35B53;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study Liouville-type theorems for fractional Hardy–Hénon elliptic systems with weights. Because the weights are singular at zero, we firstly prove that classical solutions for systems in RN\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N \backslash \{0\}$$\end{document} are also distributional solutions in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}. Then we study the equivalence between the fractional Hardy–Hénon system and a proper integral system, and we obtain new Liouville-type theorems for supersolutions and solutions by the method of integral estimates and scaling spheres respectively.
引用
收藏
相关论文
共 50 条
  • [1] Liouville-type theorems for fractional Hardy-Henon systems
    Li, Kui
    Yu, Meng
    Zhang, Zhitao
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (01):
  • [2] LIOUVILLE-TYPE THEOREMS AND BOUNDS OF SOLUTIONS FOR HARDY-HENON ELLIPTIC SYSTEMS
    Quoc Hung Phan
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2012, 17 (7-8) : 605 - 634
  • [3] Liouville-type theorem for higher order Hardy-Hénon type systems on the sphere
    Zhang, Rong
    Kumar, Vishvesh
    Ruzhansky, Michael
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [4] LIOUVILLE-TYPE THEOREMS
    MUSTAFIN, RF
    MATHEMATICAL NOTES, 1979, 25 (1-2) : 52 - 57
  • [5] Liouville-type theorems for a nonlinear fractional Choquard equation
    Duong, Anh Tuan
    Loan, Tran Thi
    Quyet, Dao Trong
    Thang, Dao Manh
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (06) : 2321 - 2331
  • [6] Liouville-type theorems for a system of fractional Laplacian equations
    Yin, Rong
    Zhang, Jihui
    Shang, Xudong
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (11) : 2646 - 2675
  • [7] Singularity and blow-up estimates via Liouville-type theorems for Hardy–Hénon parabolic equations
    Quoc Hung Phan
    Journal of Evolution Equations, 2013, 13 : 411 - 442
  • [8] Liouville-type theorems for a quasilinear elliptic equation of the Hénon-type
    Quoc Hung Phan
    Anh Tuan Duong
    Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 1817 - 1829
  • [9] Liouville-type theorems for polyhannonic systems in RN
    Liu, Jiaqun
    Guo, Yuxia
    Zhang, Yajing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 225 (02) : 685 - 709
  • [10] LIOUVILLE-TYPE THEOREMS FOR SEMILINEAR ELLIPTIC SYSTEMS
    Zhang Zhengce
    Wang Weimin
    Li Kaitai
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 18 (04): : 304 - 310