Liouville-type theorems for fractional Hardy–Hénon systems

被引:0
作者
Kui Li
Meng Yu
Zhitao Zhang
机构
[1] Zhengzhou University,School of Mathematics and Statistics
[2] Goethe-Universität Frankfurt,Institut für Mathematik
[3] Chinese Academy of Sciences,HLM, Academy of Mathematics and Systems Science
[4] University of Chinese Academy of Sciences,School of Mathematical Sciences
[5] Jiangsu University,School of Mathematical Sciences
来源
Nonlinear Differential Equations and Applications NoDEA | 2024年 / 31卷
关键词
Liouville-type theorem; Fractional-order elliptic system; Hénon-Lane-Emden conjecture; Methods of scaling spheres; Integral system; 35J30; 35J75; 35B53;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study Liouville-type theorems for fractional Hardy–Hénon elliptic systems with weights. Because the weights are singular at zero, we firstly prove that classical solutions for systems in RN\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N \backslash \{0\}$$\end{document} are also distributional solutions in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}. Then we study the equivalence between the fractional Hardy–Hénon system and a proper integral system, and we obtain new Liouville-type theorems for supersolutions and solutions by the method of integral estimates and scaling spheres respectively.
引用
收藏
相关论文
共 67 条
  • [1] Alberti G(1998)A nonlocal anisotropic model for phase transitions. I. The optimal profile problem Math. Ann. 310 527-560
  • [2] Bellettini G(2018)Free boundary regularity in the parabolic fractional obstacle problem Commun. Pure Appl. Math. 71 2129-2159
  • [3] Barrios B(2018)Global regularity for the free boundary in the obstacle problem for the fractional Laplacian Am. J. Math. 140 415-447
  • [4] Figalli A(2020)The sharp exponent in the study of the nonlocal Hénon equation in Calc. Var. Part. Differ. Equ. 59 22-1082
  • [5] Ros-Oton X(2010): a Liouville theorem and an existence result Adv. Differ. Equ. 15 1033-96
  • [6] Barrios B(2013)A new dynamical approach of Emden–Fowler equations and systems J. Funct. Anal. 264 62-293
  • [7] Figalli A(1990)Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems Phys. Rep. 195 127-1930
  • [8] Ros-Oton X(2010)Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications Ann. Math. (2) 171 1903-133
  • [9] Barrios B(2010)Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation Calc. Var. Part. Differ. Equ. 38 111-4813
  • [10] Quaas A(2021)Radial and non radial solutions for Hardy–Hénon type elliptic systems Trans. Am. Math. Soc. 374 4781-667