Generalizations of ⊕ -supplemented modules

被引:0
作者
B. N. Türkmen
A. Pancar
机构
[1] Ondokuz Mayıs University,
来源
Ukrainian Mathematical Journal | 2013年 / 65卷
关键词
Direct Summand; Commutative Ring; Torsion Module; Indecomposable Module; Dedekind Domain;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce ⊕ -radical supplemented modules and strongly ⊕ -radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕ -supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕ -radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is an srs⊕-module; (3) over a local Dedekind domain, every ⊕ -radical supplemented module is an srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains.
引用
收藏
页码:612 / 622
页数:10
相关论文
共 50 条
  • [41] Higher Level Orderings on Modules
    Min Wu
    Guang Xing Zeng*
    Acta Mathematica Sinica, 2005, 21 : 279 - 288
  • [42] A note on noncosingular lifting modules
    Kalati, T. Amouzegar
    Tutuncu, D. Keskin
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 64 (11) : 1776 - 1779
  • [43] Higher level orderings on modules
    Wu, M
    Zeng, GX
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (02) : 279 - 288
  • [44] Direct summand of serial modules
    Ba, AL-Housseynou
    Diompy, Mankagna Albert
    Diabang, Andre Souleye
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (01): : 410 - 415
  • [45] Modules with Nakayama's property
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2013, 193 (4) : 601 - 605
  • [46] The cancellation property of projective modules
    Zhang, Hongbo
    Tong, Wenting
    ALGEBRA COLLOQUIUM, 2006, 13 (04) : 617 - 622
  • [47] Lifting modules with indecomposable decompositions
    Er, Noyan
    Ertas, Nil Orhan
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (02) : 395 - 404
  • [48] Automorphism-liftable modules
    Tuganbaev, A. A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (06)
  • [49] A note on noncosingular lifting modules
    T. Amouzegar Kalati
    D. Keskin Tütüncü
    Ukrainian Mathematical Journal, 2013, 64 : 1776 - 1779
  • [50] Modules with many direct summands
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2008, 152 (2) : 298 - 303