Generalizations of ⊕ -supplemented modules

被引:0
|
作者
B. N. Türkmen
A. Pancar
机构
[1] Ondokuz Mayıs University,
来源
Ukrainian Mathematical Journal | 2013年 / 65卷
关键词
Direct Summand; Commutative Ring; Torsion Module; Indecomposable Module; Dedekind Domain;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce ⊕ -radical supplemented modules and strongly ⊕ -radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕ -supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕ -radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is an srs⊕-module; (3) over a local Dedekind domain, every ⊕ -radical supplemented module is an srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains.
引用
收藏
页码:612 / 622
页数:10
相关论文
共 50 条