Generalizations of ⊕ -supplemented modules

被引:0
|
作者
B. N. Türkmen
A. Pancar
机构
[1] Ondokuz Mayıs University,
来源
Ukrainian Mathematical Journal | 2013年 / 65卷
关键词
Direct Summand; Commutative Ring; Torsion Module; Indecomposable Module; Dedekind Domain;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce ⊕ -radical supplemented modules and strongly ⊕ -radical supplemented modules (briefly, srs⊕-modules) as proper generalizations of ⊕ -supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every left R-module is an ⊕ -radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and only if every left R-module is an srs⊕-module; (3) over a local Dedekind domain, every ⊕ -radical supplemented module is an srs⊕-module. Moreover, we completely determine the structure of these modules over local Dedekind domains.
引用
收藏
页码:612 / 622
页数:10
相关论文
共 50 条
  • [1] Generalizations of ⊕-supplemented modules
    Turkmen, B. N.
    Pancar, A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (04) : 612 - 622
  • [2] Strongly radical supplemented modules
    E. Büyükaşık
    E. Türkmen
    Ukrainian Mathematical Journal, 2012, 63 (8) : 1306 - 1313
  • [3] On ⌖-supplemented Modules
    A. Harmanci
    D. Keskįn
    P. F. Smith
    Acta Mathematica Hungarica, 1999, 83 : 161 - 169
  • [4] On ⊕-supplemented modules
    Harmanci, A
    Keskin, D
    Smith, PF
    ACTA MATHEMATICA HUNGARICA, 1999, 83 (1-2) : 161 - 169
  • [5] On strongly ⊕-supplemented modules
    C. Nebiyev
    A. Pancar
    Ukrainian Mathematical Journal, 2011, 63 : 768 - 775
  • [6] A variation of supplemented modules
    Bilhan, Gokhan
    Guroglu, Ayse Tugba
    TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (03) : 418 - 426
  • [7] ON STRONGLY ⊕-SUPPLEMENTED MODULES
    Nebiyev, C.
    Pancar, A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (05) : 768 - 775
  • [8] G-Supplemented Modules
    Kosar, B.
    Nebiyev, C.
    Sokmez, N.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 67 (06) : 975 - 980
  • [9] On generalization of ⊕-cofinitely supplemented modules
    B. Nisanci
    A. Pancar
    Ukrainian Mathematical Journal, 2010, 62 : 203 - 209
  • [10] ON GENERALIZATION OF ⊕-COFINITELY SUPPLEMENTED MODULES
    Nisanci, B.
    Pancar, A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (02) : 203 - 209