A one-dimensional liquid of fermions with tunable spin

被引:0
作者
Pagano G. [1 ,2 ]
Mancini M. [1 ,3 ]
Cappellini G. [1 ]
Lombardi P. [1 ,3 ]
Schäfer F. [1 ]
Hu H. [4 ]
Liu X.-J. [4 ]
Catani J. [1 ,5 ]
Sias C. [1 ,5 ]
Inguscio M. [1 ,3 ,5 ]
Fallani L. [1 ,3 ,5 ]
机构
[1] LENS European Laboratory for Nonlinear Spectroscopy
[2] Scuola Normale Superiore di Pisa
[3] Department of Physics and Astronomy, University of Florence
[4] Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology
[5] INO-CNR Istituto Nazionale di Ottica del CNR, Sezione di Sesto Fiorentino
来源
Pagano, G. | 1600年 / Nature Publishing Group卷 / 10期
基金
欧洲研究理事会;
关键词
D O I
10.1038/nphys2878
中图分类号
学科分类号
摘要
Correlations in systems with spin degree of freedom are at the heart of fundamental phenomena, ranging from magnetism to superconductivity. The effects of correlations depend strongly on dimensionality, a striking example being one-dimensional (1D) electronic systems, extensively studied theoretically over the past fifty years. However, the experimental investigation of the role of spin multiplicity in 1D fermions - and especially for more than two spin components - is still lacking. Here we report on the realization of 1D, strongly correlated liquids of ultracold fermions interacting repulsively within SU(N) symmetry, with a tunable number N of spin components. We observe that static and dynamic properties of the system deviate from those of ideal fermions and, for N > 2, from those of a spin-1/2 Luttinger liquid. In the large-N limit, the system exhibits properties of a bosonic spinless liquid. Our results provide a testing ground for many-body theories and may lead to the observation of fundamental 1D effects. © 2014 Macmillan Publishers Limited.
引用
收藏
页码:198 / 201
页数:3
相关论文
共 30 条
[1]  
Giamarchi T., Quantum Physics in One Dimension, (2004)
[2]  
Yang C.N., Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett, 19, pp. 1312-1315, (1967)
[3]  
Gaudin M., Un systeme a une dimension de fermions en interaction, Phys. Lett, A 24, pp. 55-56, (1967)
[4]  
Sutherland B., Further results for the many-body problem in one dimension, Phys. Rev. Lett, 20, pp. 98-100, (1968)
[5]  
Voit J., One-dimensional Fermi liquids, Rep. Prog. Phys, 58, pp. 977-1116, (1995)
[6]  
Fiete G.A., The spin-incoherent Luttinger liquid, Rev. Mod. Phys, 79, pp. 801-820, (2007)
[7]  
Imambekov A., Schmidt T.L., Glazman L.I., One-dimensional quantum liquids: Beyond the Luttinger liquid paradigm, Rev. Mod. Phys, 84, pp. 1253-1306, (2012)
[8]  
Recati A., Fedichev P.O., Zwerger W., Zoller P., Spin-charge separation in ultracold quantum gases, Phys. Rev. Lett, 90, (2003)
[9]  
Lieb E.H., Liniger W., Exact analysis of an interacting Bose gas I The general solution and the ground state, Phys. Rev, 130, pp. 1605-1616, (1963)
[10]  
Girardeau M., Relationship between systems of impenetrable bosons and fermions in one dimension, J. Math. Phys, 1, pp. 516-523, (1960)